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Structure of the full dataset: yield label distribution, substrate structures and 
descriptors 
 

Figure S1. (Top) Binary yield distribution for every nucleophile type. The x-axis labels denote the ids of substrate pairs 
in the order of nucleophile-electrophile. (Bottom) Structures of all substrates with their IDs. 

  The catalyst, base and solvents used within the dataset can be accessed through 
the structure query language database file provided on github1. Below is the list of 
descriptors used for each reaction component. 
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• Nucleophile (6 descriptors): highest occupied molecular orbital energy (HOMO), 

lowest unoccupied molecular orbital energy (LUMO), volume, area, natural bond order 
(NBO) of the atom forming the new bond (N for nitrogen nucleophiles and C for C-C 
coupling reactions), NBO of a hydrogen atom connected to the reacting atom (for all 
nucleophiles except pinacol boronates) or boron (pinacol boronate).  

• Electrophile (27 descriptors): HOMO, LUMO, Volume, Area, 13C-NMR chemical 
shift of the carbon atom forming the new bond, NBO of the same carbon, NBO of the Br 
atom, NBO values of the two adjacent atoms, 9 pairs of vibration frequency and intensity 
values around the reacting carbon atom.  

• Catalyst (26 descriptors): buried volume, Sterimol L, B1 and B5 parameters, NBO 
values of Pd and P in the pre-catalyst complex, HOMO, LUMO, 9 pairs of vibration 
frequency and intensity values around P calculated for the ligand.  

• Base (7 descriptors): HOMO, LUMO, volume, area, NBO at the basic atom, dipole 
moment, proton affinity  

• Solvent (7 descriptors): dielectric constant, molecular weight, density, Hansen D, 
P and H parameters, dipole moment. 
 
 Vibrational descriptors were used for electrophiles and ligands. For electrophiles, 
the first six pairs are from modes that involve the bonds between C and its neighboring 
bond that is not Br. The following three pairs of frequency and intensity are of modes that 
involve the C-Br bond. For ligands, the first six pairs come from modes that involve P and 
C of the two identical substituents while the last three pairs are from modes that involve 
the bond between P and C of the di-aryl group. Within each group (first six pairs and last 
three pairs), the modes were sorted in ascending order of frequency values. 
 Frequency and intensity values were extracted from modes where displacement is 
largest along bonds of interest. First, the bond vector of interest is computed from the 
optimized geometry. Then, for all vibrational modes with frequency above 500cm-1, 
frequency and intensity values, along with the displacement vector of the bond were 
extracted from the output file. The inner products of the bond vector and displacement 
vectors were computed. Three modes with highest absolute values were used for the 
frequency and intensity descriptors. This process is explained in Figure S2. 
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Figure S2. Procedure for extracting vibrational frequency and intensity values. 

 
Analysis of transfer from Bpin to phenyl sulfonamide  

 Figure 3B shows the transfer of Bpin models to predict phenyl sulfonamide 
reactions resulted in an ROC-AUC score of 0.04. While the low score may seem to be 
unsatisfactory, it indicates that the models can almost perfectly distinguish between 
positive and negative reactions. A deeper analysis was conducted to explore the reason 
behind this observation. 
 Table S1 shows the distribution of labels in each dataset (i.e. number of reactions 
that gave positive and negative yields, respectively). For electrophile 8, there is a near-
perfect inverse relationship between their labels when comparing the two nucleophile 
types, indicating that the opposite outcome occurs when switching nucleophile type.  
 

Source (Bpin) Target (Sulfonamide) 
Nuc. Id Elec. Id #Positives #Negatives Nuc. Id Elec. Id #Positives #Negatives 

4 8 39 1 S1 8 0 40 
5 2 17 11 S1 2 4 6 

Table S1. Label distributions for source (Bpin) and target (sulfonamide) by electrophile that explains the low ROC-
AUC for electrophile 1 (i.e. inverse prediction). 

 To demonstrate how the label distribution impacts model’s decisions on target 
reactions, decision paths (i.e. which descriptor values were evaluated at each node) 
applied to the 50 sulfonamide target reactions were analyzed for one Bpin random forest 
model (25 trees of depth two). Since the electrophile is common between the source and 
target datasets, if the decision path involves any electrophile descriptor, the decision tree 
will correctly recognize the target electrophile and predictions are based on this 
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information. On the other hand, the source dataset involves two nucleophiles 4 and 5, 
each reacting with electrophiles 8 and 2, respectively. If a decision path involves a 
descriptor of a nucleophile, the decision tree may recognize nucleophile S1 as either 
nucleophile 4 or 5, which leads to predictions as if the reaction involved electrophile 8 or 
2, respectively. When only descriptors of catalyst, base and solvent are used throughout 
the decision path, the decision tree does not explicitly utilize electrophile information for 
making a prediction. Predicted probabilities of the correct label were collected from each 
decision tree, on every sulfonamide reaction (Figure S3 A and B shows results on 
reactions of electrophile 8 and 2, respectively). Higher values would lead to higher ‘overall’ 
ROC-AUC values.  

In agreement to what is expected from the near-opposite labels, when the reacting 
electrophile is correctly recognized (~65% of all evaluations) as electrophile-8, decision 
trees almost always make a wrong prediction (Figure S3A, left column). Only when the 
reacting electrophile is incorrectly recognized as 2 is when a reaction between 
sulfonamide-S1 and electrophile-8 could be correctly predicted with high confidence, 
while the average value is still below 0.4 (Figure S3A, middle column). The predicted 
probability values on target reactions with electrophile-2 were undecisive, ranging 
throughout 0 and 1 (Figure S3B). Highly confident incorrect predictions of electrophile-8 
reactions and the predictions that slightly favor the incorrect prediction of reactions that 
involve electrophile-2, combined, explains the ROC-AUC close to 0.  
 

 
Figure S3. Decision trees, which compose random forests, make decisions through a series of evaluations of descriptor 
values. Due to the structure of the dataset, evaluation of nucleophile descriptors implicitly infers the identity of the 
electrophile of the reaction. (Left) Predicted probability values of 40 electrophile-8 reactions produced by decision trees 
in a Bpin model. When the electrophile is correctly inferred, as 8, the wrong prediction is made with high confidence 
(left column). Predictions that favor the correct label is made when the electrophile identity was assumed incorrectly 
(middle column). (Right) Predicted probability values of 10 electrophile-2 reactions produced by decision trees of the 
same Bpin model. The values are spread throughout 0 and 1. 

 
Lastly, Bpin models were evaluated against amide models on sulfonamide 

reactions with electrophile-2 only, to remove the effect of inverse label distribution of 
reactions of sulfonamide and electrophile-8. The ROC-AUC scores on the 10 electrophile-
2 sulfonamide reactions (Table S2) were compared between the 10 Bpin and amide 
models used in Figure 3B, which were trained on different random seeds. An independent 
two-sample t-test showed that the ROC-AUC scores for amide models are significantly 
higher than those for Bpin models (p-value 4.7e-4), supporting our claim that a model 
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built on reactions of similar mechanism is likely to transfer better than others. As such, 
balanced datasets with representation from positive and negative examples, in contrast 
to most publicly available ones, may play an important role for the investigation of how 
different substrate types relate to each other. 
 

Model 1 2 3 4 5 6 7 8 9 10 
Bpin 0.083 0.375 0.250 0.042 0.292 0.250 0.375 0.250 0.396 0.042 
Amide 0.396 0.750 0.667 0.667 0.396 0.667 0.625 0.208 0.771 0.375 

Table S2. ROC-AUC scores of models trained on two different nucleophile types predicting 10 target reactions 
between sulfonamide and electrophile-2.  

 As ROC-AUC values below 0.1 continued to be observed in Table S2, even after 
limiting the predictions to reactions of electrophile 2, the labels of the reactions were 
further inspected. 5 out of 10 common reaction conditions resulted in different yield labels 
for Bpin and sulfonamide reacting with electrophile 2. This, along with the fact that only 
10 reactions are being evaluated and the high variance across models (amide models 
show ROC-AUC score as low as 0.208, as shown in model 8 of Table S2), could all be 
reasons beneath the low ROC-AUC. However, the possibility of the mechanistic and 
structural differences between the Bpin and sulfonamide nucleophiles could also be 
playing a role.  
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Structure of datasets for Figure 4A 
 The dataset has been organized to study model generalizability and active transfer 
learning as explained in Figure 4A. As shown in Figure S1, 3-Bromopyridine and 2-
bromothiazole correspond to electrophile 8 and 2, respectively. In Figure S4A, ‘Elec2 
Train’ corresponds to the 18 reactions that are common across the source and target 
datasets. ‘Elec2 Test’ describes additional reactions between the target nucleophile and 
2-bromothiazole (25 for heterocycle, alkyl amine and aniline, as stated in the main text, 
22 for amide and sulfonamide, and 30 for ROH). In other words, when a nucleophile 
dataset is used as the source, the reactions would consist of the left and middle columns, 
while the target dataset is composed of the middle and right columns, within each section 
in Figure S4A. 

Reactions with 3-bromopyridine (electrophile 8), of which most of the source data 
consists, are well balanced in outcome. In contrast, for 2-bromothiazole (electrophile 2), 
the portion of negative reactions is significantly smaller. Therefore, defining negative 
reactions as desired outcomes represents a harder problem, as described in the 
Computational Details section. Particularly, as in Figure S4A, heterocycle (pyrazole), alkyl 
amine and aniline do not show any desired outcomes for ‘Elec2 Train’, making the 
problem even more challenging.  

The reagents (catalysts, bases and solvents) used for target reactions are those 
that were each individually employed in the source data. This is shown in Figure S4B, 
where the clusters on the right side are formed by overlaps between source and target 
reactions. This ‘familiarity of reagents’ is deliberately analogous to how chemists would 
start an exploration, before considering totally new reagents or combinations.    

 

 
Figure S4. (A) Yield label distributions of nitrogen nucleophile reaction data for generalizability and active transfer 
learning studies. (B) PCA of clustered source and target reaction conditions that are jittered horizontally to reduce 
overlap between points. Yellow datapoints on the left side correspond to source reactions with electrophile 8. Overlap 
even after jittering shows that the source and target reaction conditions used for electrophile 2 are highly similar. 
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Cross validation within source datasets 

 Models of various combinations of maximum depth and number of trees were 
evaluated through 5-fold cross-validation (CV). Results presented in the heatmaps are an 
average of ROC-AUC over models with 25 different random seeds, with standard 
deviations provided in parentheses. Random seeds impact the bootstrapping of the 
samples used when building trees and the sampling of features to consider when looking 
for the best split at each node2.  
 

 
Figure S5. In-domain CV results for each source nucleophile. Black boxes indicate the hyperparameter combination 
that results in the highest average CV score. 
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Model transfer with different source and target domain combinations 

 Generalizability of source models to the target reactions that include unseen 
reagent combinations was analyzed in Figures 4B and 4C. Here, further details on the 
comparison between CV-determined and simpler models in transfer between all source-
target pairs are provided. Our goal is to show that there may exist simpler models with 
comparable (or even better) transfer performance. 
 The simpler models used for the comparisons were determined after applying the 
following two filters. First, in-domain CV scores (used to generate Figure S5) of models 
with different hyperparameter combinations were compared to that of the models that give 
maximum score, through independent t-tests (black boxes in Figure S5). Independent t-
tests were conducted over CV scores of 25 independent runs (from different random 
seeds) for the two compared models. The models that have statistically different CV 
scores were subject to the next filter. Note that this contrasts with the common practice 
which selects models that show comparable performance to the best model and thus 
evaluates models for transfer that would not be conventionally considered. Among these 
inferior in-domain models, we further limit the models to those with a smaller number of 
maximum possible evaluation nodes (computed as num_trees * 2max_depth, strongly 
limiting the maximum depth values that can be considered) than that of the CV-
determined model. These filters were inspired by regularization, which may provide sub-
optimal training scores, but better generalizability. Then, the model that provides highest 
transfer ROC-AUC was selected to compare transfer performance with the CV-
determined model. 
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Figure S6. Procedure used to determine the highest-performing simplified model. (A) Determination of hyperparameter 
combination with highest average CV score. (B) CV scores of other hyperparameter combinations are compared to the 
CV-determined model through independent t-tests. Only those that show significantly worse performance (p<0.05) are 
further considered. (C) Then, the maximum number of decision nodes are compared. Models that reduce the number 
by at least 50% are considered. (D) Finally, we compare the highest transfer ROC-AUC (yellow box) with the CV-
determined model’s ROC-AUC.  

 The full results are provided in Table S3, which is summarized in Figure S7. In 
some cases, a simplified model significantly outperforms (determined by independent t-
tests) CV-determined models, though the reverse is also possible. In 14 of 30 cases, 
there is no statistical significance to the differences in hyperparameter choice (as shown 
with X markers in Figure S7). The simplified models with better performance outnumber 
the CV-determined models (9 green circles vs 7 purple circles). The biggest contributors 
to CV-determined models statistically outperforming simplified models are transferring 
with aniline source models, where the aniline source data is significantly different in 
structure than others (Figure S4A).  
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Figure S7. Summary of the comparison between CV-determined models and simpler models. The marker shape shows 
whether the p-value resulting from independent t-test is below 0.05. Marker color and size shows which model scheme 
resulted in a higher average ROC-AUC and to which extent, respectively. 

 
 
Source Target CV-

#Trees 
CV-

Depth 
Simpler-
#Trees 

Simpler-
Depth 

CV Avg 
ROC-AUC 

(std) 

Simpler Avg 
ROC-AUC 

(std) 
Amide Sulfon 200 3 50 1 0.69 (0.05) 0.81 (0.09) 

 ROH   50 2 0.83 (0.01) 0.82 (0.02) 
 Aniline   5 1 0.91 (0.01) 0.93 (0.01) 
 Het   10 1 0.52 (0.02) 0.62 (0.06) 
 Alkyl   5 1 0.93 (0.01) 0.94 (0.01) 

Sulfon Amide 100 1 3 2 0.59 (0.04) 0.65 (0.07) 
 ROH   3 3 0.77 (0.03) 0.79 (0.04) 
 Aniline   5 1 0.90 (0.02) 0.89 (0.06) 
 Het   5 1 0.60 (0.03) 0.62 (0.04) 
 Alkyl   5 1 0.91 (0.02) 0.90 (0.06) 

ROH Amide 50 1 3 3 0.61 (0.05) 0.73 (0.11) 
 Sulfon   5 3 0.84 (0.03) 0.84 (0.07) 
 Aniline   5 1 0.90 (0.02) 0.92 (0.03) 
 Het   5 1 0.62 (0.04) 0.62 (0.06) 
 Alkyl   5 1 0.91 (0.02) 0.93 (0.03) 
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Aniline Amide 200 1 20 2 0.59 (0.04) 0.59 (0.08) 
 Sulfon   20 1 0.82 (0.03) 0.68 (0.18) 
 ROH   20 1 0.79 (0.04) 0.77 (0.06) 
 Het   20 1 0.74 (0.04) 0.63 (0.09) 
 Alkyl   20 1 0.82 (0.08) 0.72 (0.21) 

Het Amide 200 1 5 2 0.56 (0.02) 0.60 (0.05) 
 Sulfon   10 2 0.77 (0.02) 0.80 (0.04) 
 ROH   10 2 0.71 (0.03) 0.75 (0.05) 
 Aniline   20 1 0.93 (<0.01) 0.92 (0.02) 
 Alkyl   10 1 0.94 (<0.01) 0.92 (0.04) 

Alkyl Amide 100 2 5 2 0.56 (0.07) 0.53 (0.06) 
 Sulfon   5 2 0.63 (0.13) 0.56 (0.17) 
 ROH   5 2 0.75 (0.04) 0.76 (0.06) 
 Aniline   5 1 0.91 (0.01) 0.93 (<0.01) 
 Het   5 2 0.62 (0.06) 0.57 (0.07) 

Table S3. Full analysis of CV-determined models vs best-performing simpler models. The latter was chosen from 
hyperparameter combinations that result in significantly worse CV scores and with smaller number of decision nodes. 
The hyperparameters of both models and corresponding average transfer ROC-AUC scores and standard deviation 
are shown. ROC-AUC values that are higher than the other by at least 0.01 is highlighted bold. 

 
Adversarial controls for model transfer 

Table S3 shows that models transferred amongst N-nucleophiles make meaningful 
predictions (ROC-AUC values > 0.5). To show that this is not due to a spurious correlation 
between the datasets, 25 source models were trained on shuffled yield labels through 5-
fold cross-validation (yield labels were shuffled differently each time). The transfer 
performance of y-shuffled models was compared to that of unshuffled models for all 
source-target pairs. The heatmap below shows the p-values from independent t-tests for 
each scenario. Except one case (alkyl amines à amide) where transfer failed in the 
original model, all comparisons show significant difference. Therefore, models trained 
with proper data labels (i.e. unshuffled y) are crucial for making meaningful transfer. 
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Figure S8. Heatmap of p-values resulting from independent t-tests between y-shuffled models and CV-determined 
models. 

Models built upon DFT descriptors were compared to models using fingerprints 
and one-hot labels. Each reaction was represented with fingerprints by concatenating 
each component’s Morgan fingerprint of length 1,024 and radius of 2 (resulting vector is 
length 5,120). Each column of a source one-hot label array corresponds to a compound 
used within the entire source dataset. Each reaction is then represented with 1’s at the 
columns of the compounds used and 0’s at all other elements, resulting in five 1’s. 
Importantly, for target reactions, since the target nucleophile was never used in the source 
dataset, there all nucleophile columns have the value of 0.  

Figure S9 shows the results of all transfer scenarios, sorted by representation. The 
diagonal plots show average in-domain CV scores. For four of the six source nucleophiles, 
models based on fingerprints showed a significantly higher in-domain CV score. However, 
when transfer performance is compared, independent t-tests after Bonferonni correction 
show DFT descriptor models significantly outperform models trained with other two 
representations in 16/30 transfers. Fingerprints perform better in 6/30 scenarios than 
other representations, while only 2 scenarios favor one-hot encoding. For remaining 6 
cases, the three representations did not result in statistically better models. Particularly, 
for transfers where performance differs significantly, the ROC-AUC benefit of descriptors 
over fingerprints is larger than fingerprints over descriptors, as shown in Figure S10. This 
result suggests that the use of DFT descriptors can be beneficial over fingerprints or one-
hot encoding. This might be due to the better representation of mechanisms with DFT 
descriptors than one-hot encoding, which is equivalent to distinguishing compounds by 
their names, and fingerprints, which are purely structural. 
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Figure S9. Adversarial control with fingerprints and one-hot labels. Diagonals correspond to in-domain CV performance. 
Row and column labels correspond to source and target nucleophiles, respectively. Black diagonal hatches of each bar 
denote that the corresponding representation’s models perform statistically better than the other two, after Bonferonni 
corrected p-values of independent t-tests. ** denotes p<0.01. *** denotes p < 0.001.  
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Figure S10. ROC-AUC benefit of the statistically better performing representation. 

 
ATL results of ‘target tree growth’ strategy with other source datasets 

 From this section onwards, the target nucleophile is pyrazole unless stated 
otherwise. With the other two source datasets and pyrazole as target, the target tree 
growth model is compared to other baselines. The descriptors selected by models at 
different iterations were also analyzed. Similar observations to that in the main text 
(Figure 5) can be made for the other two source nucleophiles. 
 

 
Figure S11. (Top row) Results of the target tree growth ATL strategy with different source datasets. (Bottom row) 
Portions of descriptors selected by models at each iteration, with different source datasets. 
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Reaction selection behavior of different strategies 

 The analysis of selected reactions provided insight on how the adaptation of target 
tree growth ATL proceeded along iterations. Therefore, the behaviors of the passive 
model, which does not update knowledge from collected target reactions, and AL on 
combined source and collected target data is shown in Figure S12.  
 One notable aspect of the target tree growth ATL was its choice to move onto a 
different catalyst in the third iteration after confirming that the use of the bottom two bases 
yield negative reactions in the second iteration (two bottom reactions are left unlabeled in 
the bottom right cluster in Figure S12A). In contrast, the passive source model exhausts 
the negative reactions in the right top cluster at the third iteration. This is continued at 
latter iterations at the clusters located at PC1 near 1 (Figure S12B). Similarly, models 
updated with combined data also exhausts the reactions that involve rightmost catalyst in 
the first three iterations. However, this is changed in the fourth iteration, where reactions 
are sampled from clusters with different catalysts, which implies the newly combined 
target data may have started to make an influence in the selection process. However, 
unlike the target tree growth ATL, it continues to sample the bottom two reactions of a 
cluster, even though it has seen numerous negative examples, leading to inefficient 
exploration. This demonstrates the difference in what the models learn, following different 
strategies. 
 

 
Figure S12. Examples of which reactions were selected at each batch (up to the 5th iteration), for different strategies. 
Grey circles are unlabeled reactions. The number markers denote the iteration number, and their colors identify the 
labels of the reaction. 
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Comparison of model performance on source and collected target data to  
understand the adaptation of models in the target domain 
 

 
Figure S13. Evaluations of the adaptability of two different ATL strategies. (A) and (B) correspond to results of 
retraining on combined data with weight of 5 on target datapoints and target tree growth, respectively. The plots show 
how models at every iteration perform on the source data (blue curves) and collected target data up to that point 
(orange curves).  

  
To evaluate the adaptability of each ATL strategy in the target reaction space, the 

performance of models at each iteration were evaluated on the target data that has been 
collected up to that point and compared to their performance on source data which is also 
in hand. Figure S13A shows the results on models that were trained on the combined 
source and target data. Even with sample weight of 5 on target datapoints, models fail to 
show meaningful performance on the target data they have been trained on (Figure S13A, 
orange curve), while performance on the source data is remains high (Figure S13A, blue 
curve). In contrast, the target tree growth strategy, which adds decision trees trained only 
on newly collected target data, performs better on the collected target data than the 
source (Figure S13B) even after the first iteration. These results indicate higher degree 
of adaptation in the target domain for the target tree growth strategy compared to models 
retrained on the combined data.  
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ATL results when models are trained on combined source and target data with 
importance weights favoring the target 
 For this target, the first ATL strategy retrains a random forest on the dataset that 
combines the source data with all collected target reactions every iteration. Random 
forests of five trees with maximum depth of one were used. Since the source data 
outnumbers the target data, especially in early iterations, and our goal is to model the 
target data, weights greater than one for the target were considered. Weight of zero is 
equivalent to using the source model as is (i.e. passive), while the weight of one considers 
each source and target reaction data point equally. For clarity, only the average number 
of reactions found across 25 model instances are shown.  
 

 
Figure S14. Performance of different importance weight values on collected target reactions when models are updated 
every iteration on the combined data. Source nucleophile is written as the title and the target is pyrazole. 

 For most cases in Figure S14, the performance curves lie near the diagonal, which 
corresponds to random selection. This suggests that model updates based on combined 
datasets do not provide significant benefit over random selection or passive learning 
(weight=0), probably due to the low adaptability in the target reaction space as 
demonstrated in Figure S14A. 
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ATL results when different number of ‘target trees’ are added to the model every 
iteration 

 
Figure S15. Target tree growth results when different number of decision trees are added every iteration. 

 Next, the addition of different numbers of decision trees were evaluated. Adding 
one target tree every iteration (pink curves) does not show as good performance as 
adding three (magenta curves). This is attributed to the insufficiency of using a single 
decision node to extract useful reactivity information. Adding five trees (black curves) 
does not give significant benefit compared to three, probably because only three reactions 
are collected in each iteration.   
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ATL results of ‘target tree growth’ strategy with various reaction selection criteria 
 

 
Figure S16. Evaluation of various reaction selection strategies under the target tree growth strategy. Std coefficient of 
0 for upper confidence bound (UCB) is equivalent to exploitation. Confidence intervals were not shown for clarity 
between exploitation and UCB. 

 Next, various reaction selection strategies were compared. See Computational 
Details for a description of the strategies. As the objective is to find datapoints with a 
certain label rather than reducing the error, selecting uncertain data points (Figure S16, 
green curves) in the active learning iteration is not beneficial. Upper confidence bound 
(UCB), which combines exploitation and uncertainty of the model, seems to perform 
(Figure S16, orange curves) on par with pure exploitation (Figure S16, blue curves) when 
the coefficient on variance is 0.5. This is partially due to the small dataset that the model 
can explore. Higher coefficient of 2 was not as beneficial probably due to the same reason 
as the ineffectiveness of selecting uncertain datapoints. 
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Effect of using source random forest models with more or deeper trees on target 
tree growth ATL 
 

 
Figure S17. Evaluation of ATL performance with different source model hyperparameters. Left column corresponds to 
phenyl sulfonamide as source, while the right column corresponds to ROH as source. (A) and (B) starts with the 
source model with five decision trees, where their maximum depth differs. The decision trees in the source models of 
(C) and (D) are limited to maximum depth of one, differing in the number. 

 As in the Discussion section (Figure 6), the importance of source model simplicity 
is evaluated for phenyl sulfonamide and aliphatic alcohols. Similarly, source models that 
are more complex than five trees of maximum depth one does not show better target tree 
growth performance. While the extent to which the number of trees affects performance 
is greater for phenyl sulfonamide (Figure S17C, after 5th batch) and ROH (Figure S17D, 
after 5th batch) than benzamide as source, it is not as profound as having different 
maximum depth values.  

The greater impact of the maximum depth of the trees can be explained by the 
way predictions are made. When random forests make a prediction on a datapoint, the 
average of probability values of the leaf nodes that the datapoint arrives in each decision 
tree is computed2. These probability values are the ratio of the labels of the training data 
that arrived at leaf nodes. Therefore, a deeper tree, which is more likely to have a purer 
composition of labels at leaf nodes due to higher probability of overfitting, will have higher 
probability values. Ultimately, the contribution of the unaltered source model to the overall 
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probability value is larger, making it harder to adapt in the target reaction space, as the 
source model has no knowledge of the target reactivity.  
 
 
Effect of combined source data on target tree growth ATL 

 
Figure S18. Performance of both passive prediction and target tree growth ATL with source models trained on combined 
datasets shown in the title of each plot.  

 When there are multiple source datasets with similar screened reaction conditions, 
a better predictivity can be expected. Accordingly, target tree growth ATL was conducted 
on source models trained on combined datasets of amide, sulfonamide and ROH. 
However, a simple concatenation of datasets does not seem to result in better 
performance than the best performing single model (ROH).  
 
 
Comparison of target tree growth ATL with AL strategies 

 In the main text and the Supporting Information up to this point, analyses were 
centered around pyrazole as the target nucleophile. To understand the overall benefit of 
the target tree growth ATL in various scenarios, it was compared with the two AL 
baselines between all source-target pairs of the six nitrogen-based nucleophiles. In 
contrast to trellis of plots up to this point (e.g. Figure 3B or Figure S9), rows and columns 
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of Figure S19 correspond to the target and source, respectively. 100 randomly initiated 
models (5 trees of depth 1) were trained and transferred. 
 In all tests, the target tree growth ATL outperforms AL with no transfer, while the 
degree of benefit differs between target nucleophiles. When compared to AL on combined 
source and target data, the number of reactions found is nearly the same at the first 
iteration. This is explained by the dominance of the source data at the early stage for both 
strategies. From the second iteration, two trends are observed. When over 1/3 of the 
target candidates are positive (i.e. one can expect one positive reaction just by sampling 
three random reactions, when sulfonamide and ROH are targets), the performance of the 
target tree growth ATL slightly trails the latter baseline. More importantly, however, for 
challenging cases where less than 20% of the candidates are positive and applying the 
positive reaction conditions from the source data would be unsuccessful (except amide, 
where 2/5 positive reaction conditions are also positive in source), target tree growth ATL 
outperforms the AL baseline. Additionally, even though the aniline source models used 
for ATL, without any updates, transfer poorly compared to CV-determined models (worse 
than that listed in Table S3), ATL allows efficient exploration for these challenging cases 
(Figure S20, leftmost column). 
 Based on this observation, an overall summary of the target tree growth ATL’s 
benefit over each AL baseline is provided in Figure S21. The portion of reactions found 
by each strategy was compared to the maximum number of positive reactions that could 
be found up to that iteration. At each iteration, a Friedman test, followed by a Holm-Dunn 
post-hoc test, was performed to evaluate the statistical difference in performance, of 
which the p-values are presented in Tables S4 and S5. These results demonstrate how 
effective the target tree growth method could be in various scenarios, especially being 
significantly more efficient in finding good reaction conditions for the most challenging 
reaction types.  
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Figure S19. Trellis of performance plots of ATL vs AL baselines. Source nucleophiles are amide, sulfonamide and ROH, 
from left to right. Target nucleophiles are amide, sulfonamide, ROH, aniline, pyrazole and alkyl amines from top to 
bottom. 
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Figure S20. Trellis of performance plots of ATL vs AL baselines. Source nucleophiles are aniline, pyrazole and alkyl 
amines, from left to right. Target nucleophiles are amide, sulfonamide, ROH, aniline, pyrazole and alkyl amines from 
top to bottom. 
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Figure S21. Overall improvement on the portion of number of reactions found by a strategy, compared to the 
maximum number of reactions that can be found up to each iteration. (Top) Analysis conducted on four target 
nucleophiles where the portion of positives < 20%. (Bottom) Analysis conducted on sulfonamide and ROH targets, 
where the portion of positives > 33%. 

Strategy 
Iteration 

1 2 3 4 5 6 
Combined Data 1.00 0.390 0.030 0.020 0.039 0.035 

No Transfer 6.87e-7 4e-6 1.60e-7 9.96e-7 1.1e-5 4.8e-5 
Table S4. P-values resulting from the Holm-Dunn post-hoc test on the portion of number of reactions found by a strategy, 
compared to the maximum number of reactions that can be found up to each iteration, from the four targets with eight 
or less desired reactions. The values are compared to target tree growth ATL, which performs best as shown in Figure 
S21 (top).  

Strategy 
Iteration 

1 2 3 4 5 6 
Combined Data 1.00 0.358 0.153 0.153 0.027 0.035 

No Transfer 3.61e-4 1.50e-3 3.69e-3 3.69e-3 0.102 0.193 
Table S5. P-values resulting from the Holm-Dunn post-hoc test on the portion of number of reactions found by a strategy, 
compared to the maximum number of reactions that can be found up to each iteration, from sulfonamide and ROH 
targets with >33% positives. The values are compared to target tree growth ATL, which trails combined data but 
outperforms no transfer (Figure S21 bottom). 
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Additional examples of target tree growth ATL – 1 

 
Figure S22. (A) Problem setting for ATL. Three nitrogen source nucleophiles are all considered, while the target is 
now a complex aliphatic primary amide with 40 reaction condition candidates of which 9 have desired outcomes. (B), 
(C) and (D) correspond to ATL results with respective source data. The source model has five trees of maximum 
depths of one.  

 Additional source and target pairs are examined to further investigate the 
applicability of our target tree growth strategy. Here, the same three source nucleophiles 
as the main text and 40 reactions of a complex aliphatic primary amide are considered as 
target. As in the main text, three reactions were labeled every iteration, and the shades 
in each plot show the 95% confidence interval from 25 different initial source models. 

For benzamide, the target tree growth strategy did not show significant benefit over 
other baselines. Compared to when source data was not utilized, target tree growth 
showed a slightly inferior rate of desired reaction condition identification (Figure S22B, 
red vs. orange curves). For sulfonamide, there is a benefit of finding one more reaction 
at the mid-stage of the exploration (3rd~6th iteration), compared to other baselines. Lastly, 
for ROH, the advantage of the target tree growth model is minimal. 
 Two explanations can be made for the reduced benefit of the target tree growth 
ATL compared to having pyrazole as target. First, the target nucleophile here is more 
complex in structure compared to the source nucleophiles. The source model therefore 
cannot address the deviation of reactivity that may arise from the structural differences, 
such as the nitrogen atoms that are not part of the amide functional group. Pyrazole, in 
contrast, is among the simplest structures within their classes, letting the source model 
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adapt relatively easily. Second, the reactivity of the target nucleophile is hard to model, 
as maximum cross-validation ROC-AUC that can be achieved with models trained on the 
40 target reactions is 0.64 (not shown, available in jupyter notebook). This means that 
adding decision trees trained on three reactions may not be sufficient to make effective 
predictions on the remaining reactions. 
 
 
Additional example of model transfer and target tree growth ATL - 2 
 

 
Figure S23. (A) Problem setting for transfer from diethyl malonate to 2-indanone. 10 out of 40 reactions give positive 
yields. (B) Cross-validation results for modeling with malonate data. The optimal performance is highlighted with the 
dashed red square. (C) Model transfer performance of malonate models on the 40 reactions of 2-indanone. Dashed 
red square corresponds to the combination of hyperparameters determined by cross-validation. Solid square denotes 
simpler hyperparameters yet achieving comparable transfer performance. (D) ATL results with source models of 
three trees of depth one.  

 Both model transfer generalizability and ATL were evaluated for C-C coupling 
reactions. The datasets were prepared in a similar manner to what was considered in the 
main text (Figure 4A), where the diethyl malonate source data was composed of the same 
82 reaction conditions as the three nitrogen nucleophile source datasets. For candidate 
target reactions, 40 reaction conditions for the coupling between 2-indanone and 2-
bromothiazole was used (Figure S23A). As 10 out of 40 reactions showed >0% yield for 
the target, we look for positive reactions, unlike the case where aniline, alkyl amine or 
pyrazole was considered as target.  
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Cross-validation determines random forests of 200 trees of maximum depth of two 
as optimal source models (Figure S23B, dashed grey square). Simpler models, with three 
trees of depth one, perform better when transferred (Figure S23C, solid grey square). For 
consistency, we use the source models of five trees of depth one for the ATL experiment.  

From the third iteration, using no source data outperforms both the passive use of 
the source model and ATL on combined source and target data (Figure S23D orange vs. 
purple and magenta curves), suggesting the importance of proper target information 
update. Like the results observed in the main text (Figure 5A), the target tree growth 
strategy (red curve) accelerates the rate of hits compared to the other two baselines. This 
result is surprising because the transfer ROC-AUC of the source model is 0.49, slightly 
worse than random guessing. It contrasts with the previous examples, where source 
models with transfer ROC-AUC of 0.5 and 0.53 did not achieve a similar boost in rate 
(Figures S22B and D) through target tree growth. From the molecular structure 
perspective, the target nucleophile does not have functional groups other than the 
reacting center that might undergo side reactions. Also, the benzylic carbon, which is the 
reaction center, is stabilized by the carbonyl and phenyl rings, which makes it relatively 
similar to the source nucleophile. Thus, we conclude that the chemical and structural 
relevance is important for the ATL strategy to succeed.  
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Additional example of model transfer and target tree growth ATL - 3 
 

 
Figure S24. (A) Problem setting for transfer from pinacol boronates to 3-pyridine boronic acid. (B) Cross-validation 
results for modeling with pinacol boronate data. The optimal performance is highlighted with the dashed grey square. 
(C) Model transfer performance of pinacol boronate models on the 28 reactions of 3-pyridine boronic acid. Dashed grey 
square corresponds to the combination of hyperparameters determined by cross-validation. Solid grey square (top right) 
denotes hyperparameters that achieve optimal transfer performance. (D) ATL results with source models of 5 trees of 
maximum depth of one.  

 Lastly, we consider the transfer scenario between two nucleophile types that 
undergo Suzuki coupling. The source data consists of 40 reactions between 4-(N,N-
dimethylamino)phenylboronic acid pinacol ester (top nucleophile under source data in 
Figure S24A) and 3-bromopyridine and 14 reactions between 1-benzylpyrazol-4-boronic 
acid pinacol ester (bottom nucleophile under source data in Figure S24A) and 2-
bromothiazole. Notably, 39 of 40 reactions are successful for the former substrate pair. 
Unlike previous cases, there are 28 target reactions between pyridin-3-ylboronic acid and 
2-bromothiazole, of which 9 show positive yields. Therefore, we look for positive yielding 
reactions.  

Cross-validation with 54 source pinacol boronate data points reveals source 
models with five trees of maximum depth one to be optimal for the source data (Figure 
S24B, dashed grey square). Cross-validation scores do not differ between models with 
different hyperparameters, probably due to the extreme yield label distribution in one 
substrate pair of the source data. This also results in source models failing to extract 
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information on reactivity that is transferable. As such, highest transfer performance was 
achieved with a large number of trees (Figure S24C). 

 Nevertheless, ATL experiments were conducted with source models of 5 trees of 
maximum depth one. This case, various strategies show similar performance. Specifically, 
strategies that use source models are slightly more efficient than no transfer, up to the 4th 
iteration, probably due to the information from the reactions of source nucleophile with 2-
bromothiazole. The target tree growth model (Figure S24D, red curve) does not exceed 
other baselines that involve model transfer. Two aspects may be playing a role. First is 
the misleading guidance of the source model as it does not include meaningful 
information on reactivity from biased data. Second is the difficulty of modeling the target 
data (as can be seen in jupyter notebook ‘complexity_vs_transfer’, cross-validation 
scores when training with the target dataset is below 0.75). Also, the target dataset 
considered here consist of ~33% positives, reminiscent of what was observed in Figures 
S19 and S20 when sulfonamide or ROH was target - the portion of positives were ~35% 
and target tree growth strategy could not outperform AL on combined data.  

In summary, the additional examples imply the importance of structural similarity 
between the source and target nucleophiles for the target tree growth model to be 
beneficial. While not definitive, given mechanistic similarity and structural similarity, ATL 
seems to perform better than the baselines considered in this study on more challenging 
cases where the ratio of positives are smaller. Lastly, the use of ATL with biased source 
data should be applied with caution, as the source model may fail to learn meaningful 
information.  

The numpy arrays of descriptors and corresponding yield labels of the three target 
nucleophiles used in the Supporting Information are available on github1 as separate 
joblib files. 
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