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1. Training details

(a) Input features of the neural network
Atom features

Initial atom features in our model are summarized in Table 1. The X in the atom type corresponds to all
other atom types except C, N, O, F, P, S, Cl, and Br. The final dimension of the node vector is 54.

Feature list
Atom type C, N, O, F, P, S, Cl, Br, X (onehot)
Period 1, 2, 3, 4, 5, 6 (onehot)
Group 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 (onehot)
Degree of atom 0, 1, 2, 3, 4, 5 (onehot)
Hybridization s, sp, sp2, sp3, sp3d, sp3d2, unspecified (onehot)
Formal Charge -2, -1, 0, 1, 2, 3, 4 (onehot)
Aromaticity 0 or 1

Supplementary Table 1: The list of initial atom features

Adjacency matrices

Our graph representation, G(H,A), contains two adjacency matrices expressed as equations (1) and (2). A1

and A2 are constructed to account for the covalent bonds and intermolecular interactions in a protein-ligand
complex, respectively.

A1
ij =

{
1 if i and j are connected by covalent bonds or i=j

0 otherwise
(1)

A2
ij =

{
1 if 0.5 Å ≤ dij ≤ 5.0Å
0 otherwise

(2)

For A2, we neglect the atom-atom pair interactions whose pairwise distance is smaller than 0.5 or larger
than 5.0. By placing the upper threshold, we limit the effect of distant atoms and reduce the complexity of
the graph representation. By setting the lower threshold, we avoid exceptional atom pairs within extremely
short distances.

(b) Model architecture
Gated graph attention network (Gated GAT)

The nth unit of the gated GAT generates a set of the next node features from the set of the current node
features, Hn = {hn

1 , hn
2 , · · · , hn

N}, and the adjacency matrix A1, where hn
i ∈ RF . The scalar values N

and F are the number of the atoms in a protein-ligand complex and the dimension of the node feature,
respectively. The initial step of the gated GAT is the multiplication of a learnable weight, Wn

1 ∈ RF×F

and the node feature, hn
i to produce an embedded node feature, mn

i , which has more information about
protein-ligand complex. From the embedded node feature, mn

i , the attention coefficient, enij between the ith

and the jth nodes is computed as follows:

enij = (mn
i )

TWn
2 m

n
j + (mn

j )
T (Wn

2 )
Tmn

i , (3)

where Wn
2 ∈ RF×F is also a learnable matrix. enij implies the influence of the ith node to update the features

of the jth node. The summation of (mn
i )

TWn
2 m

n
j and (mn

j )
T (Wn

2 )
Tmn

j forces enij and enji to be equal. We
adopted the softmax activation function to normalize the attention coefficient, enij , across neighboring nodes.
The normalized attention coefficient, anij , is given by
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anij =
exp(enij)∑

j∈Ni
exp(enij)

, (4)

where Ni is the set of the neighboring nodes of the ith node. Then, the current node feature, h̃n
i is calculated

via the linear combination of the neighboring node features weighted by the attention coefficient, aij , with
a ReLU activation function:

h̃n
i = ReLU(Σja

n
ijh

n
j
′). (5)

We also used the gate mechanism to effectively deliver the previous node features and the current node
features to the next node features. The importance of the previous node features, zi, is computed from hn

i

and h̃n
i as follows:

zi = σ(Wn
3 ((h

n
i ∥h̃n

i ))), (6)

where σ is a sigmoid activation function which constrains zi between 0 and 1, (·||·) is a concatenation
operation, and Wn

3 ∈ R2F×1 is a learnable weight vector. Lastly, the next node feature, hn+1
i , is a linearly

interpolated value between hn
i and h̃n

i :

hn+1
i = zih

n
i + (1− zi)h̃n

i . (7)

We used three units of the gated GAT to incorporate intramolecular interactions into the node features.

Interaction network

The interaction network takes the previous set of node features, Hn = {hn
1 , h

n
2 , · · · , hn

N}, and the adjacency
matrix A2 to generate the next set of node features, Hn+1 = {hn+1

1 , hn+1
2 , · · · , hn+1

N }. The interaction
network first multiplies hn

i with a learnable weight, Wn
1 ∈ RF×F to get the set of embedded node features,

M1 = {m1
1, m1

2, · · · , m1
N} as follows:

m1
i = Wn

1 h
n
i , (8)

where i is the index of node features. The interaction network also makes a set of interaction embedded node
features, M2 = {m2

1, m2
2, · · · , m2

N} with each previous node feature, hn
i , a learnable weight, Wn

2 ∈ RF×F

, and the adjacency matrix A2. The interaction embedded feature of the ith node is represented by:

m2
i = max

j∈Ni

{Wn
2 h

n
j }, (9)

where Ni is the set of nodes which have interactions with the ith node. By maximum aggregation for each
node, the set of interaction embedded node features, M2, becomes the most important node feature element
within nodes with intermolecular interactions. From M1 and M2, we can get a set of total node features,
H ′n = {h′n

1 , h′n
2 , · · · , h′n

N} through the summation and a ReLU activation function:

h′n
i = ReLU(m1

i +m2
i ). (10)

The next set of node features, Hn+1
i , can be obtained from a gated recurrent unit (GRU)[1] by using a set

of total node feature, H ′n, as a hidden state input and the previous set of node features, Hn.

hn+1
i = GRU(h′n

i , hn
i ) (11)

Total node features, H ′n, updates the previous set of node features, Hn, recursively in the GRU cell. As
a result, the next set of node features, Hn+1, is more likely to reflect only important features of the given
protein-ligand complex when updating node features.

The interaction network makes a significant role in our model by transforming a set of node features of
the protein-ligand complex to contain information about intermolecular interactions. To make a set of node
features that sufficiently contains intermolecular interaction information, the interaction network consists of
three units.
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(c) Physics-informed parameterized functions
PIGNet consists of several physics-informed parameterized functions: four energy components and a ro-
tor penalty. Each energy component is computed with a set of pair-wise node features, Hconcat, which
represented as equation (12). Each pair-wise node feature consists of two node features, hi and hj .

Hconcat = {hconcat
1 , hconcat

2 , · · · , hconcat
N2 }

= {(h1||h1), (h1||h2), · · · , (hN ||hN−1), (hN ||hN )}
(12)

Each energy component depends on dij , and d′ij , which are distance, and corrected minimum distance
between the ith node and the jth node. d′ij can be represented as follows:

d′ij = ri + rj + c · bij , (13)

where ri and rj are van der Waals radii of the ith and the jth nodes respectively, and bij is corresponding
correction between two nodes. For the constant c that scales bij , we used 0.2. The correction constant,
bij , originates from a set of pair-wise node features, Hconcat, by using learnable weights, W 1 ∈ R2F×F and
W 2 ∈ RF×1, as the following:

bij = tanh(W 2(ReLU(W 1(hconcat
ij )))). (14)

van der Waals interaction

We used the 12-6 Lennard-Jones potential to calculate a van der Waals interaction term, evdwij , between the
ith and jth atoms. Equation (15) summarizes evdwij :

evdwij = cij

[(
d′ij
dij

)12

− 2

(
d′ij
dij

)6
]
, (15)

where cij indicates the minimum interaction energy which is also predicted from neural networks. We
constrain the minimum and maximum values as 0.0178 and 0.0356, respectively, to render the predicted
energy component similar to the true energy component. The maximum value of cij is referred from the
parameter of AutoDock Vina for steric interactions.[3] Equation (16) summarizes the calculation of cij :

cij = σ(W vdw
2 (ReLU(W vdw

1 hconcat
ij )))× (0.0356− 0.0178) + 0.0178, (16)

where W vdw
1 ∈ R2F×F , and W vdw

2 ∈ RF×1, are weight matrices. We consider all protein and ligand atom
pairs except metal atoms whose van der Waals radii have high variance depending on atoms types. We
obtain the total van der Waals energy, Evdw, by summing evdwij of all possible pairs, as follows.

Evdw =
∑
i,j

evdwij (17)

The hydrogen bond, metal-ligand interaction, hydrophobic interaction components, and rotor penalty can
be computed as described in the main article.

Hydrogen bond, Metal-ligand interaction, Hydrophobic interaction

Table 2 shows SMARTS descriptors which are used to select the hydrogen bond donors and hydrogen bond
acceptors.

hydrogen bond acceptor [$([!#6;+0);!$([F,Cl,Br,I]);
!$([o,s,nX3]);!$([Nv5,Pv5,Sv4,Sv6])]

hydrogen bond donor [!#6;!H0]

Supplementary Table 2: SMARTS descriptors for hydrogen bond acceptor and donor
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(d) Hyperparameter settings and computational resources
This section will show all the parameters used for the model training. The hidden dimension, F used in the
gated GAT and the interaction network were given as 128 for all implemented model architectures. During
the training, the dropout ratio and learning rate were 0.1 and 0.0001, respectively. The minimum values and
ratios for each loss term were used as mentioned in the previous section.

The batch size of every model trained with the data augmentation is fixed to 8 with the RTX 2080 Ti
GPU. The 3D CNN-based model, the 3D GNN-based model and PIGNet are trained to 200, 1,100 and 2,300
epoch, respectively. Again, the PIGNet (single) result was obtained from the model without dropout, while
the result of PIGNet (ensemble) was produced by using 30 ensemble models and the same dropout ratio as
the training phase.

2. Benchmark methods

(a) CASF-2016 benchmark metrics
In this supplementary section, we explain the CASF-2016 benchmark metrics we report as our results[2].

• Scoring power: This is defined as a linear correlation of predicted binding affinity and experimental
binding data. The linear correlation is measured in the Pearson’s correlation coefficient, R. In fact,
the scoring functions in comparison with PIGNet produce log affinity (logKa) values, while PIGNet
computes binding free energy values [kJ/mol]. Nevertheless, since a constant multiplication converts
logKa to the binding free energy, such a difference does not make a change in the R values.

• Ranking power: This refers to the ability of a model to correctly rank the binding affinities of the
true binders for a certain target protein, given the binders’ precise binding poses. The ranking power
can be measured in terms of the average Spearman’s rank correlation coefficient, ρ, the Kendall’s rank
correlation coefficient, τ , and the Predictive Index (PI). We only report Spearman’s rank correlation
coefficients for our experiments, as all three metrics are well-correlated.

• Docking power: This is the ability of a model to find the native ligand binding pose among decoys
with computer-generated poses. The metric for the docking power measurement is the overall success
rate, which counts a complex identified by a model as a successful case if it has a high conformational
similarity (RMSD < 2Å) with the native binding pose.

• Screening power: This is the ability of a model to identify the true binding ligands for a given
target protein among a set of random molecules. We measure the screening power in terms of the
enhancement factor (EF) and success rate, averaged across all 57 target proteins. The success rate is
computed as a ratio of highest-affinity binder among the top α(%) ligands. The enhancement factor
for a target protein is defined as follows:

EFα =
NTBα

NTBtotal × α
, (18)

where NTBα is the number of the true binders among the top α(%) candidates ranked by a model,
and NTBtotal is the total number of the true binders for the given target protein. We cite our results
in the average enhancement factor and success rate measured at α = 1%.

3. Interpretation of the physically modeled outputs

(a) Distribution plot of atom-atom pairwise interaction in each energy compo-
nent
By dissecting the predicted energies into individual energy components, we could observe that the model has
learned the deviations within each energy component. Fig. 1 shows a distance-energy plot of each energy
component, where the data points are the atom-atom pairs in the test set. Note that the pairwise energy plots
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are not a single solid line, but the multifariously deviated distributions. For the van der Waals component,
while the plot generally complies with the form of the 12-6 Lennard-Jones potential, the deviations arise
from the two learnable parameters, bij and cij . bij also contributes to the deviations in the hydrophobic,
hydrogen bond, and metal energy components, as the parameter is used to calculate the corrected sum of
van der Waals radii in equation (13).

Supplementary Figure 1: The distance-energy plot for each energy component in the test set. The closer to
the yellow, the larger the number of pairs corresponding to the data point.
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