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1. Reagents and Materials

PSA, anti-PSA monoclonal capture antibody (mAb1), anti-PSA monoclonal detective 

antibody (mAb2), biotinylated anti-PSA monoclonal detective antibody, human 

alpha-fetoprotein antigen (AFP), anti-AFP monoclonal capture/detective antibodies, 

Human carcinoembryonic antigen (CEA), monoclonal capture/detective anti-CEA 

antibodies were purchased from Linc-Bio Science (Shanghai, China). In addition, 

human IgG (HIgG) and Goat-anti-human IgG (GaH IgG) were obtained from 

Sanchen Biotechnology (Nanjing, China). 

The Mag Sepharose microbeads, composed of iron oxide cores embedded in 

agarose matrices and are surface-functionalized with N-hydroxysuccinimide (NHS), 

were purchased from GE Healthcare. Thermo Fisher Scientific supplied the Alexa 

Fluor 546-STV (AF546-STV) conjugates, and Streptavidin conjugated Poly HRP 

(STV-Poly HRP). Tween-20 and bovine serum albumin (BSA) were acquired from 

Sangon Biotech (Shanghai, China). The alkylthiol-capped 5’-Biotin oligonucleotides 

probe (5’-Biotin-TTTTTTTTTTTTTTTTTTTTTTTTT-SH-3’) was synthesized and 

purified by Sangon Biotech (Shanghai, China). Gold (III) chloride trihydrate was 

acquired from Sigma-Aldrich. TSA Biotin Reagent Pack (containing biotin-tyramide 

and 1× TSA buffer) was purchased from Beijing Biodragon Immunotechnologies Co., 

Ltd. All of the other chemical reagents were of analytical grade and used as received 

without further purification.

The detailed components of the used buffers in this study are listed below:

1× PBS (10 mM, pH 7.4, containing 137 mM NaCl and 2.7 mM KCl);



PBS-BSA (1× PBS with 1% BSA and 0.1% tween-20);

PBST (1× PBS with 0.05% tween-20);

Blocking buffer A (0.5 M ethanolamine, 0.5 M NaCl, pH 8.3);

Blocking buffer B (0.1 M Na-acetate, 0.5 M NaCl, pH 4.0);

1× TSA buffer (0.01 M PB，0.15 M NaCl，0.01% H2O2，pH 7.4).

2. Preparation of mAb2-AuNPs-biotin DNA

The 16 nm colloidal AuNPs were prepared following the well-established citrate-

reduction method. The mAb2-AuNPs-biotin DNA nanocomplexes were prepared 

according to a modified literature protocol.[S1] Typically, 1 mL of 16 nm colloidal 

AuNPs were adjusted to pH 9.2 - 9.5 using a 0.1 M Na2CO3 solution. Then, 10 μL 

anti-PSA mAb2 (1.0 mg/mL) was introduced, and the mixture was incubated at room 

temperature for 20 min with mild rolling. Afterward, the alkylthiol-capped 5’-Biotin 

oligonucleotides (1 nmol) were pipetted into the mixture. After gently shaking for 5 

min, the mixture was further incubated at 4 °C overnight. Following that, the mixture 

was first buffered to 10 mM PB (pH 7.2), and then the NaCl concentration was tuned 

to 0.15 M under slow stirring. The mAb2-AuNPs-biotin DNA was purified by 

multiple rounds of centrifugation. Finally, the obtained mAb2-AuNPs-biotin DNA 

was dispersed in 1 mL of PBS-BSA and stored at 4 °C. The pre-treatment of the 

mAb2-AuNPs-biotin DNA with BSA as well as tween-20 can efficiently suppress 

their non-specific binding effect.

3. Preparation of capture antibody-conjugated SB

Typically, hundreds of SBs contained in 80 μL PBST were deposited onto a 



transparent 96-well plate cover hole to assist the capture of individual SBs. A 

micromanipulator system (Narishige) equipped on an Olympus IX53 inverted 

microscope with a monitor is used to manipulate a SB. With the help of the camera 

and monitor, we can search the SBs with suitable sizes on the screen with naked eyes. 

A homemade ruler is used to help us select the beads with the desired narrow size (80 

± 5 μm). Once a desirable SB is selected, we only need a pipette to catch and transfer 

it into a tube. More detailed manipulations of pipetting microbeads have been 

described in our group's previous work.[S2,S3] We first select 20 uniform microbeads 

together in a tube, and add 100 μL ice-cold 1 mM HCl to activate their NHS surfaces. 

Next, after isolation, add the mAb1 (0.1 μg) solution into the processed beads and mix 

well, and let the medium incubate with mild shaking for 1 h. Then the active site on 

the surface of the microbeads are effectively blocked by using Blocking buffer A and 

B in turn for three times according to the product manual. Then, we added 200 μL 

PBST to wash the microbeads (pipette and drain out the washing buffer PBST for 3 

times and then the PBST is removed by magnetic separation), finally the mAb1-

conjugated microbeads are stored in PBS-BSA. Immediately before the immunoassay, 

the uniformly modified SBs are transfered into each reaction tube one by one.

It should be noted that since both the surfaces of mAb1-conjugated SBs and the 

mAb2/biotin-DNA-functionalized AuNPs are passivated with BSA, and BSA/Tween-

20 are also added in the immunoreaction system, the nonspecific interaction between 

the SB and the AuNPs can be efficiently suppressed.

4. Standard procedures for the SBE strategy



The SB-mAb1 was incubated with 1 μL of PBS-BSA containing series dilutions of 

target antigen for 1 h. Moreover, 2 μL of biotinylated anti-PSA detective antibody 

(0.1mg/mL) was added to perform the noncompetitive sandwich immunoreaction at 

room temperature for another 1 h under mild shaking. After washing the superfluous 

detective antibody, 5 μL of excess AF546-STV (0.1 μg) in PBS was added for 

fluorescence staining. After 1h, the SB was washed and immediately subjected to 

fluorescence imaging.

5. Standard procedures for the SBEA strategy and SBEAA strategy.

The immunoreaction part of the SBEA strategy was the same as the SBE Strategy. 

After washing the excess detective antibody, excess streptavidin Poly HRP (0.1 μg) 

was added into the bead. After 1 h incubation, wash the bead and prepare for TSA 

reaction. 

Mix 50 μL 1× TSA buffer (containing 0.01% H2O2) and 1 μg biotin-tyramide (1 μL 

from 1 mg/mL stocking solution) together, then dilute the mixture 10 times by PBS. 

The 10 μL TSA reaction solution was added to each SB and mild shake for 30 min. 

After washing, adding 5 μL of excess AF546-STV (0.1 μg) for fluorescence staining. 

After 1h, the SB was washed and immediately subjected to fluorescence imaging. 

The only difference before TSA reaction between SBEAA strategy and SBEA 

strategy is replacing the biotinylated anti-PSA detective antibody with 2 μL mAb2-

AuNPs-biotin DNA in the immunoreaction part. Since the sensitivity of SBEAA was 

further remarkably improved, we also optimized the reaction conditions for TSA 

reaction part of SBEAA. Finally for TSA amplification in SBEAA, mix 50 μL 1× 



TSA buffer and 2 μg biotin-tyramide together, then dilute the mixture 50 times by 

PBS, add 10 μL TSA reaction solution to each SB and mild shake for 30 min. The 

next steps are also the same as SBEA.

All fluorescence images were taken on an Olympus FV-1200 laser scanning 

confocal microscope following modified protocols in our previous report.[S2,S3] Briefly, 

the SB was spread on a coverslip, and its fluorescence image was obtained. By 

collecting the fluorescence at test parameters for AF546 of the instrument. The 

integrated fluorescence intensity of each SB was acquired for the quantitative analysis 

of the target antigen. It should be noted that the maximum fluorescence value of a 

bright spot that the fluorescence microscope can quantitatively acquire is 4096. 

Therefore, to acquire a brighter MB image but not exceed this maximum value, the 

PMT voltage of the fluorescence microscope may be reasonably tuned for the imaging 

of MBs at different batches for different experimental conditions.

6. The original fluorescence imaging results of the SBEAA strategy for PSA 

detection

Fig. S1 The original fluorescence imaging results of the SBEAA strategy for PSA 



detection. In order to display the results more intuitively, the corresponding pseudo-

color results (displayed in different colors for different intensities) is showed in Fig. 2 

in the main text.

7. Optimization of the concentration of TSA reagent for SBEA

According to the instruction of the commercial TSA Biotin Reagent Pack, the 

recommended TSA reagent for traditional biological staining is mixing 50 μL 1× TSA 

buffer (containing 0.01% H2O2) and 1 μg biotin-tyramide together. Herein, to reduce 

the nonspecific background signal, so as to achieve the best signal-to-noise ratio in the 

SBEA, we further optimized the concentration of the reaction mixture on PSA 

detection. The reaction mixture was undiluted or was diluted 10 times, 50 times, 100 

times, or 200 times with PBS buffer to detect 50 pg/mL PSA.

The concentration of TSA reagent has a significant impact on the single bead-based 

assay. The PSA-induced signal is strong under the high concentration of the reaction 

solution, while the corresponding blank value is also very high. Conversely, the 

sample signal is weak under the low concentration of the reaction solution, and the 

relative blank value is also low. However, due to the limitation of instrument range, it 

is impossible to accurately measure the fluorescence intensity of each group of 

experiments under the same test conditions. Therefore, we adjusted the PMT test 

voltage of the microscope to ensure that the integrated fluorescence intensities of each 

group of blank controls were almost the same. So that all test results were guaranteed 

within the detectable range. The difference between the signal intensity and the blank 

of the sample is then compared to evaluate the experimental conditions. The test 



voltage for undiluted, diluted 10 times, 50 times, 100 times, 200 times samples used 

in order: 350V, 380V, 410V, 460V, 480V. The experimental results are shown in Fig. 

S2. It was found that when the TSA reaction mixture was diluted 10 times by the PBS 

buffer, the difference between the integrated fluorescence intensity of the sample 

signal and the blank signal was the maximum. Therefore, we finally determined that 

the TSA reaction mixture should be diluted 10 times with PBS buffer. So in the final 

reaction condition, tyramide concentration is 2 μg/mL with 0.001% H2O2.

Fig. S2 Optimization of the concentration of TSA reagent for the SBEA.

8. Optimization of the TSA reaction time for SBEA



We also optimized the TSA reaction time. The experimental results at 10 min, 20 

min, 30 min, 40 min, and 50 min of TSA reaction were tested. Likewise, we adjusted 

the test voltage so that the integrated fluorescence intensities of each group of blank 

controls was almost the same. The difference between the signal intensity and the 

blank of the sample is then compared to evaluate the experimental conditions. The test 

results are shown in Fig. S3. It can be seen that the difference between the 

experimental signal and the blank signal reaches the maximum at 30 min, so we chose 

the TSA reaction time of 30 min as the optimal condition for subsequent experiments.

Fig. S3 The optimization of TSA reaction time for SBEA.



9. The linear relationship between integrated fluorescence intensities (FI) of the 

beads and the logarithm of the PSA concentrations by using SBEA

We Integrate the fluorescence signals of each bead image for the quantitative 

analysis of the target PSA in the SBEA. As shown in Fig. S4, the beads' integrated 

fluorescence intensities (FI) are linearly proportional to the logarithm of the PSA 

concentrations in the range from 1 pg/mL to 100 ng/mL. The correlation equation is 

FI = 1.45 × 106 + 3.80 × 106 lgCPSA/(ng/mL), with a correlation coefficient (R) of 

0.9973.

Fig. S4 The relationship between the integrated fluorescence signals of the SBs and 

the PSA concentrations. Error bars represent the standard deviation from three 

independent measurements. 

10. Procedures of the single bead-based size encoding strategy for the 

simultaneous detection of PSA/AFP/CEA

Three kinds of single microbead of different sizes were selected respectively. 

Conjugating AFP antibodies on the 95 μm microbeads, 85 μm microbeads for CEA, 



and 75 μm microbeads for PSA, respectively. After such microbeads have been 

modified, blockeded, and washed respectively, one of each of the three types of 

microbeads is put into a single reaction tube together. After introduction of the 

samples containing different combinations of antigens, the three types of SBs can 

only enrich a correspondingly specific antigen after 1 h immunoreaction. Then, after 

further incubation with a cocktail solution containing three types of mAb2-AuNPs-

biotin DNA for anoher 1 h, the three target-encoded SBs are subjected to TSA 

amplification and fluorescence imaging simultaneously. The following experimental 

procedures was the same as that for a single microbead-based SBEAA assay. 

11. Evaluation of the specificity of the SBEAA

The specificity of the proposed SBEAA is interrogated by challenging the SBEAA 

system with different protein species, including AFP, CEA, human IgG (HIgG), and 

Goat-anti-human IgG (GaH-IgG), by using the anti-PSA capture antibody-conjugated 

SB and the anti-PSA detective antibody-AuNPs-biotin DNA. As shown in Fig. S5, 

only PSA can arouse a significant fluorescence signal on the SB while the responses 

of other proteins are negligible, clearly suggesting the high specificity of the SBEAA.



Fig. S5 Specificity evaluation of the SBEAA. Fluorescence images of the SBEAA 

system were acquired in the presence of different antigens by using anti-PSA 

antibodies. The concentrations of all of these antigens are 10 pg/mL. 

12. Evaluation of the generality of the SBEAA for the detection of CEA and AFP

We changed the types of antibodies conjugated with SB and AuNPs and examined 

the universality of SBEAA using CEA and AFP detection as an example. The results 

of CEA testing are shown in Fig. S6 and S7. The integrated fluorescence of SBs are 

proportional to the CEA concentrations in the range from 50 fg/mL to 50 pg/mL with 

the correlation equation FI = -1.69 × 106 + 6.10 × 106 lgCCEA/(fg/mL) and a 

correlation coefficient (R) of 0.9966.



Fig. S6 The fluorescence images of the SBs for different concentrations of CEA from 

0 (blank) to 50 pg/mL. It can be seen from the experimental results in the image that 

the signal of 50 fg/mL CEA can be distinguished from the blank signal. The images in 

the top panel are raw fluorescence imaging. The panel's bottom illustrates the 

corresponding SB images using pseudocolor bars in different colors to indicate 

different intensitieslors.

Fig. S7 The relationship between the integrated fluorescence signals of the SB and the 

CEA concentrations of SBEAA from 0 (blank) to 50 pg/mL. Error bars represent the 

standard deviation from three independent measurements.

Meanwhile, as shown in Fig. S8 and S9, AFP also showed similar test results. 

There is a good linear relationship between the integrated fluorescence of SBs and 

logarithm of AFP concentrations from 10 fg/mL to 50 pg/mL with the correlation 

equation FI = 5.00 × 105 + 7.21 × 106 lgCAFP/(fg/mL) and a correlation coefficient (R) 

of 0.9900. These results demonstrate that by employing the corresponding target-



specific antibodies, the proposed SBEAA can be readily extended as a general 

strategy for detecting various antigens.

Fig. S8 The fluorescence images of the SBs for different concentrations of AFP from 

0 (blank) to 50 pg/mL. It can be seen from the experimental results in the image that 

the signal of 10 fg/mL AFP can be distinguished from the blank signal. The images in 

the top panel are raw fluorescence imaging, in the bottom panel are illustrations of the 

corresponding SB images by using pseudocolor bars in which different colors indicate 

different intensities. 

Fig. S9 The relationship between the integrated fluorescence signals of the SB and the 

AFP concentrations of SBEAA from 0 (blank) to 50 pg/mL. Error bars represent the 

standard deviation from three independent measurements.
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