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UNIQUAC Equations

UNIQUAC models the logarithmic activity coefficient ln γi of a component i in a mixture as

a combination of a combinatorial part (C) and a residual part (R):1,2

ln γi = ln γCi + ln γRi (S.1)
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The combinatorial part ln γCi is calculated by:

ln γCi = 1− Vi + lnVi −
z

2
qi

(
1− Vi

Fi

+ ln
Vi
Fi

)
(S.2)

with

Vi =
ri∑
j rjxj

(S.3)

Fi =
qi∑
j qjxj

(S.4)

where ri and qi are the relative Van der Waals volume and surface area of component i,

respectively, xi is the mole fraction of i in the mixture, and z is the coordination number,

which is usually set to 10; z = 10 was also used throughout this work. Hence, ln γCi depends,

besides on the composition, only on pure-component parameters of i and the ones of the

remaining components j = 1..J that make up the mixture that is considered.

The residual part ln γRi is calculated by:

ln γRi = qi

(
1− ln

∑
j qjxjτji∑
j qjxj

−
∑
j

qjxjτij∑
k qkxkτkj

)
(S.5)

with

τij = exp

(
−∆Uij

RT

)
; τji = exp

(
−∆Uji

RT

)
(S.6)

where ∆Uij and ∆Uji are pair-interaction parameters describing the pairwise interaction

between the two components i–j in the mixture, R is the universal gas constant, and T is the

thermodynamic temperature in Kelvin. Hence, in contrast to the combinatorial part ln γCi ,

the residual part ln γRi depends on both pure-component parameters (qi) and pair-interaction

parameters between all combinations of components in the mixture (∆Uij, ∆Uji).

The pure-component parameters (ri, qi) are reported for a large number of relevant com-

ponents, and can also be estimated with the approach introduced in combination with the
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group-contribution method UNIFAC.3,4 The pair-interaction parameters (∆Uij, ∆Uji), on

the other hand, which are required for all binary combinations i–j of the components that

make up the considered mixture, are usually fitted to experimental data on the respective

binary subsystem i–j, oftentimes to data on the vapor-liquid equilibrium (VLE). Since ex-

perimental mixture data are, however, in general scarce, ∆Uij and ∆Uji have so far only

been reported for a small fraction of the practically relevant systems.

In basically all cases when UNIQUAC is used in practice, ∆Uij and ∆Uji are individually

fitted to data for the respective binary system i–j. Following the derivation of UNIUQAC1,2

from the lattice theory, these parameters are, however, not independent across binary sys-

tems, but are linked via pair-interaction energies U :

∆Uij = Uij − Ujj (S.7a)

∆Uji = Uij − Uii (S.7b)

where Uii and Ujj are like pair-interaction energies of the components i and j, respectively,

i.e., they describe the pairwise interaction of molecules of the same type (i–i or j–j), whereas

Uij is an unlike pair-interaction energy that describes the pairwise interaction of different

molecules (i–j here). Uij is, in contrast to ∆Uij, by definition symmetric, i.e., in general it

holds that

Uij = Uji (S.8)

but

∆Uij 6= ∆Uji. (S.9)

By fitting ∆Uij and ∆Uji for multiple systems individually to data for each binary sys-

tems i–j, the resulting parameters will almost certainly not comply with the physical con-

straint given in Eq. (S.7). As an example, let us consider three different components, which

we simply number consecutively (1, 2, 3), and all binary combinations of them (1–2, 1–3, 2–

3



3). According to Eq. (S.7) and using Eq. (S.8), the resulting six pair-interaction parameters

of UNIQUAC are correlated via:

∆U12 = U12 − U22 (S.10a)

∆U21 = U12 − U11 (S.10b)

∆U13 = U13 − U33 (S.10c)

∆U31 = U13 − U11 (S.10d)

∆U23 = U23 − U33 (S.10e)

∆U23 = U23 − U22 (S.10f)

Pairwise aggregating yields:

∆U12 + U22 = ∆U21 + U11 (S.11a)

∆U13 + U33 = ∆U31 + U11 (S.11b)

∆U23 + U33 = ∆U32 + U22 (S.11c)

By subtracting Eq. (S.11c) from Eq. (S.11b), we obtain:

∆U13 −∆U23 = ∆U31 −∆U32 + U11 − U22 (S.12)

Finally, substituting U11 by Eq. (S.11a) in Eq. (S.12) and simplifying yields:

∆U13 −∆U23 = ∆U31 −∆U32 + ∆U12 −∆U21 (S.13)

Eq. (S.13) will almost certainly not be satisfied if the pair-interaction parameters are

fitted to the respective binary systems individually, as it is usually done in practice. In

other words, UNIQUAC is commonly applied in a way in which the complete set of pair-

interaction parameters for N components can be arranged in an asymmetric N ×N matrix
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with empty diagonal. However, following the derivation of UNIQUAC, only a triangular

matrix (or a symmetric matrix) can be filled with truly independent parameters, namely

the pair-interaction energies U , with the like energies Uii representing the diagonal and the

unlike energies Uij the off-diagonal elements.

Data and Data Preprocessing

Data set

All data points used in this work were taken from the Dortmund Data Bank (DDB) 2020.5 For

training the model, only data for binary mixtures were used. For evaluating the performance,

also mainly data for binary mixtures were used, but, in addition, also some data sets for

ternary mixtures were considered as described below. In general, only data for mixtures

of molecular components were used, while data for mixtures containing salts, ionic liquids,

pure metals, or unspecified components were excluded. Also excluded were all data sets

that were labeled as questionable or of poor quality in the DDB. Further, only components i

were considered for which the relative van der Waals volume and surface area, ri and qi,

respectively, were either reported in the DDB or could be calculated with the approach

described in connection with original UNIFAC3 in its present parameteriziation.

Two types of data for binary mixtures reported in the DDB were used: first, data on

activity coefficients at infinite dilution in binary mixtures γ∞ij and second, data on the vapor-

liquid equilibrium (VLE) of binary mixtures up to a pressure of 10 bar. From the VLE data,

activity coefficients γij (at finite concentration) were calculated using extended Raoult’s law

assuming an ideal gas phase and neglecting the pressure dependence of the chemical potential

in the liquid phase:

psi(T ) · xi · γij(T, xi) = p · yi (S.14)

where psi is the vapor pressure of the pure component i at the considered temperature T , xi
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and yi are the mole fraction of i in the liquid phase and in the vapor phase, respectively,

γij is the activity coefficient of i in the liquid mixture (with j), and p is the pressure. psi

was calculated with the Antoine equation using Antoine parameters reported in the DDB,

if available. A VLE data point from the DDB was therefore only used if information on T ,

xi, yi, and p were reported and if Antoine parameters for the considered component i and in

the relevant temperature range were available in the DDB. Also VLE data for mixtures with

formic acid and acetic acid were excluded from the data set as these components can usually

not be modeled with an ideal vapor phase even at low to moderate pressures. Eq. S.14

and the named pure-component parameters were also used for the prediction of VLE phase

diagrams from the predicted γij after training the model.

The γij calculated from the VLE data according to Eq. S.14 were, together with the data

for γ∞ij adopted from the DDB, further processed as described in the following. If multiple

data points for the same system i–j, the same concentration xi, and same temperature T

were available, the median of the activity coefficients was calculated and used. Further, only

the data for those systems i–j were used for which at least two distinct data points, i.e., at

different temperatures and/or concentrations, were available. The latter constraint is not

necessary for the hybrid model MCM-UNIQUAC introduced here, but it is required for the

classical system-wise fitting of UNIQUAC, which was used as benchmark here, cf. Figure 2

in the manuscript.

Finally, each component for which data in only a single binary system were available,

was rejected, resulting in a data set in which:

• for each component i, j data for at least two different binary systems i–j, and

• for these systems, at least two data points (at different temperature and/or concentra-

tion) were available.

The resulting data set comprises 363181 experimental data points for 12199 binary sys-

tems i–j including 1146 components i, j and covers a temperature range from 183 K to 638 K.
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This data set was split into a training set containing all data points for 80% (9759) of the

binary systems i–j, a validation set containing all data points for 10% (1220) of the binary

systems, and a test set containing all data points for the remaining 10% (1220) of the binary

systems. This data split was done randomly, but ensuring that for each component i, j, data

on at least one binary system i–j were available in the training set. This is necessary as the

training set was subsequently used for learning the parameters of MCM-UNIQUAC, which

requires (at least some) information for each component. The validation set was used for

model selection, i.e., for choosing the model’s hyperparameters (see below). Therefore, the

model was trained on the training set for different hyperparameters and the predictions for

the data from the validation set were compared to the (true) experimental data. Based on

the resulting mean absolute error (MAE) and mean squared error (MSE), the best hyper-

parameters were chosen and the ”final” model was evaluated based on the MAE and MSE

scores on the test set, which was used neither for training the model nor for choosing the

hyperparameters. In all cases, the MAE and MSE scores were calculated by averaging over

binary systems; specifically, we calculated the MAE (MSE) for each binary system from

the respective set by comparing the logarithmic activity coefficients ln γij as predicted with

MCM-UNIQUAC to the respective experimental values from the DDB, and subsequently

averaging the obtained MAE (MSE) over all systems. The same procedure was applied with

the predictions of UNIFAC for obtaining the respective scores for comparison.

Model Details

Bayesian Matrix Completion

As in our previous works,6,7 we use a Bayesian approach to matrix completion for the pre-

diction of logarithmic activity coefficients ln γij in unmeasured binary mixtures i–j in the

present work. The approach consists of three steps. In the first step, a generative proba-

bilistic model for the variable of interest, i.e., ln γij here (the logarithm was used for scaling
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purposes), is specified as a nonlinear function of the components i, j, the temperature T ,

and the composition of the mixture given by the mole fraction of component i xi, as well

as relative van der Waals volumes qi and qj and surface areas ri and rj of the components

i and j (taken from the DDB5 if available or calculated with the approach introduced in

combination with original UNIFAC3,4 otherwise, cf. above), initially unknown (latent) fea-

tures vectors θi, θj, βi, and βj of the components, and the like pair-interaction energies Uii

and Ujj of the components. The nonlinear function is defined by the UNIQUAC model,

cf. Eqs. (S.1)-(S.6), but additionally acknowledges the correlations of the pair-interaction

parameters ∆U via pair-interaction energies U as follows from the derivation of UNIQUAC,

cf. Eq. (S.7). The vectors θi, θj, βi, and βj, which contain the latent features of the com-

ponents and model the unlike pair-interaction energies, cf. Eq. (4) in the manuscript, and

whose length K is a hyperparameter that was set to K = 3 during model selection, as well

as the like pair-interaction energies Uii and Ujj constitute the parameters of our model and

are inferred during the training step.

For inferring the model parameters, the probabilistic model defines a probability distri-

bution over all ln γij from the training set by specifying a stochastic process that generates

hypothethical data on ln γij conditioned on the initially unknown (latent) parameters of the

components (θi, θj, βi, βj, Uii, Ujj), known descriptors of the pure components (qi, qj, ri, rj),

and specified conditions (T, xi), which are subsequently ”compared” to the true experimental

data (at the same conditions). Therefore, the generative process first draws latent parame-

ters from a normal prior distribution with zero mean and a standard deviation of one; mean

and standard deviation of this prior distribution are also hyperparameters of the model and

were set based on the scores on the validation set. The generative process then models the

probability of the experimental activity coefficients ln γexpij from the training set as a Cauchy

likelihood distribution with scale λ centered around the results of the UNIQUAC equations

with the latent parameters drawn from the prior, the given known descriptors of the com-

ponents, and the specified conditions; the scale λ, which was set to λ = 0.2, as well as the
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choice of a Cauchy distribution are also hyperparameters of the model and were selected

based on the scores on the validation set. The likelihood can be written as follows:

ln γexpij (T, xi) = Cauchy (fUNIQUAC (Uij, Uii, Ujj, qi, qj, ri, rj, T, xi) , λ) + εij (S.15)

where f represents Eqs. S.1-S.7, Uij is calculated according to Eq. 4 in the manuscript, and

the random variable εij captures both inaccuracies of the experimental data and the model.

In the second step, the latent parameters (θi, θj, βi, βj, Uii, Ujj) are simultaneously

inferred for all considered components during the training of the specified generative model

on all experimental data for ln γij from the training set by inverting the generative model.

For this purpose, we resorted to Gaussian mean-field Variational Inference8–10 as this has

shown good results in our previous works.6,7 Since the generative model is probabilistic, all

inferred latent parameters are random variables, and for each latent parameter, a probability

distribution, called posterior, is obtained.

In the third step, we use the means of the approximate posterior distributions over

θi, θj, βi, and βj to predict the unlike pair-interaction energies Uij according to Eq. 4

in the manuscript, which we then use together with the means of the approximate pos-

terior distributions over Uii and Ujj to predict the pair-interaction parameters ∆Uij and

∆Uji of UNIQUAC according to Eq. S.7, which we, finally, use to predict temperature- and

concentration-dependent ln γij with Eqs. S.1-S.6 by also using the known geometric pure-

component parameters (qi, qj, ri, rj).

For all data points in the test set, the predictions for ln γij are compared to the respective

experimental values to evaluate the predictive performance of the model. For performing

the above described steps, we use the Stan framework11 that allows specifying user-defined

generative models and automates the task of Bayesian inference.10 Figure S.1 shows the code

for the probabilistic model in Stan.
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data {
   int<lower=0> I; // number of components
   int<lower=0> N; // number of data points in training set
   int<lower=0> K; // number of latent dimensions
   real<lower=0> Factor; // factor for scaling the latent parameters (set to 1000 here)
   real Data[N,3]; // list of data points: temperature T, mole fraction of i x_i, ln_gamma_ij 
   int<lower=0> Components[N, 2];   // list of component identifiers: i, j
   real<lower=0> Parameters[I, 2];  // list of geometric pure-component parameters: r, q
   real mu_0; // prior mean
   real<lower=0> sigma_0; // prior standard deviation
   real<lower=0> lambda; // likelihood scale

}

parameters {
   vector[K] theta[I];     // feature vectors for unlike interaction energies
   vector[K] beta[I];      // feature vectors for unlike interaction energies
   real pure[I]; // pure-component energies

}

model {
   int i; // solute identifier
   int j; // solvent identifier
   real T; // temperature in K
   real conc1; // mole fraction of i
   real conc2; // mole fraction of j
   real r1; // r_i
   real r2; // r_j
   real q1; // q_i
   real q2; // q_j
   real V1; // volume fraction of i per mixture mole fraction
   real F1; // surface area fraction of i per mixture mola fraction
   real u11; // binary pure-component interaction energy i-i
   real u22; // binary pure-component interaction energy j-j
   real u12; // binary mixture interaction energy i-j (symmetric)
   real Delta_u12; // UNIQUAC interaction parameter i-j 
   real Delta_u21; // UNIQUAC interaction parameter j-i
   real tau12; // temperature-dependent interaction parameter i-j
   real tau21; // temperature-dependent interaction parameter j-i

   // Prior: draw latent parameters for all components:
   for (k in 1:I) {

theta[k] ~ normal(mu_0, sigma_0);     
beta[k] ~ normal(mu_0, sigma_0);     
pure[k] ~ normal(mu_0, sigma_0);     

   }

   // Likelihood: model the propability of the experimental ln_gamma_ij as a Cauchy distribution
   // around the UNIQUAC result based on the interaction parameters calculated from the latent parameters
   for (r in 1:N) {

i = Components[r, 1];
j = Components[r, 2];
T = Data[r, 1];
conc1 = Data[r, 2];
conc2 = 1-conc1;
r1 = Parameters[i, 1];
q1 = Parameters[i, 2];
r2 = Parameters[j, 1];
q2 = Parameters[j, 2];    
u12 = (theta[i]' * beta[j]) + (theta[j]' * beta[i]);    
u11 = pure[i];
u22 = pure[j];
Delta_u12 = (u12 - u22) * Factor;
Delta_u21 = (u12 - u11) * Factor;
V1 = r1 / (conc1 * r1 + conc2 * r2);
F1 = q1 / (conc1 * q1 + conc2 * q2);
tau12 = exp(-Delta_u12 / (T * 8.314));        // universal gas constant R = 8.314 J/(mol*K)    
tau21 = exp(-Delta_u21 / (T * 8.314));
Data[r, 3] ~ cauchy(

1 - V1 + log(V1) - 5*q1*(1-V1/F1+log(V1/F1)) + q1*(1-log((q1*conc1+q2*conc2*tau21)/(q1*conc1+q2*conc2))...
- (q2*conc2*tau12)/(q2*conc2+q1*conc1*tau12) - (q1*conc1)/(q1*conc1+q2*conc2*tau21)),
lambda

);
   }

}

Figure S.1: Stan code of the probabilistic generative model for the prediction of activity
coefficients by embedding an MCM into the thermodynamic model UNIQUAC.
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Additional Results

In Figure S.2 (left), the results of MCM-UNIQUAC to describe the ln γij from the training

set and to predict the ln γij from the test set are shown by considering the mean squared

error (MSE) averaged over binary systems. In Figure S.2 (right), the results of MCM-

UNIQUAC are compared to those of the physical baseline method modified UNIFAC (Dort-

mund)12,13 (UNIFAC), whereby only those data points from the training set or test set

were considered that could also be modeled by UNIFAC (’UNIFAC horizon’). The respec-

tive results for the mean absolute error (MAE) are shown in Figure 2 in the manuscript;

MCM-UNIQUAC clearly outperformes UNIFAC in both metrics.
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1 0
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0 . 1
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M C M - U N I Q U A C U N I F A C
U N I F A C  h o r i z o n

Figure S.2: Mean squared error (MSE) of MCM-UNIQUAC on the training and test set
(left) and comparison to UNIFAC based only on those systems that can also be modeled
with UNIFAC (right). The bars indicate the results of MCM-UNIQUAC and UNIFAC,
whereas the lines denote the baselines obtained by directly fitting UNIQUAC pair-interaction
parameters (∆Uij, dotted) or pair-interaction energies (Uij, dashed) to all available data
points. Error bars denote standard errors of the means.

In Figure S.3, the predictions of MCM-UNIQUAC and UNIFAC for the data from the test

set are compared in a histogram representation. For a fair comparison of the two methods,

only those data points that can be predicted with both methods are considered here. Fig-

ure S.3 shows the mean absolute error (MAE, left) and the mean squared error (MSE, right)

of MCM-UNIQUAC and UNIFAC for each binary system as calculated by comparing the
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predictions for ln γij to the respective experimental data; as in Figure 2 in the manuscript,

all scores were obtained by averaging over binary systems.
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Figure S.3: Mean absolute error (MAE, left) and mean squared error (MSE, right) of the
predictions for ln γij for binary systems from the test set with MCM-UNIQUAC and UNIFAC
in histogram representations. The deviations were calculated by comparing the predictions
to the respective experimental values from the DDB. The shown ranges for the MAE (left)
cover 98.3% of all systems for MCM-UNIQUAC and 98.0% for UNIFAC. The shown ranges
for the MSE (right) cover 95.4% of all systems for MCM-UNIQUAC and 94.7% for UNIFAC.

The results show a better performance of MCM-UNIQUAC compared to UNIFAC, i.e.,

there are more binary systems for which ln γij can be predicted accurately (with low MAE

and MSE) than this is the case with UNIFAC.

For the sake of completeness, Figure S.4 shows histogram representations similar to those

shown in Figure S.3, but only considering the predictions with MCM-UNIQUAC for those

data points from the test set that can not be modeled with UNIFAC.
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Figure S.4: Mean absolute error (MAE, left) and mean squared error (MSE, right) of the
predictions of MCM-UNIQUAC for ln γij in the binary systems from the test set that can
not be modeled with UNIFAC in histogram representations. The deviations were calculated
by comparing the predictions to the experimental data from the DDB. The shown ranges
cover 96.1% (MAE, left) and 91.9% (MSE, right) of all systems.

The performance of MCM-UNIQUAC for the prediction of ln γij for those systems is

slightly worse than that for the systems that can also be modeled with UNIFAC, cf. Fig-

ure S.3. However, again for most systems small MAE and MSE scores are observed, indi-

cating a reasonable accuracy of MCM-UNIQUAC. We attribute the slightly worse accuracy

of MCM-UNIQUAC for the systems considered here to the fact that these mostly relate to

rather uncommon components, which are less studied and, as a consequence, for which less

data points for training the model are available.

Comparison of MCM-UNIQUAC to COSMO-SAC-dsp

In Figure S.5, we additionally compare the predictions of MCM-UNIQUAC to those of an-

other baseline method, namely the quantum-chemical based COSMO-SAC-dsp.14,15 Similar

to Figure S.3, only the predictions for those data from the test set that can also be predicted

with COSMO-SAC-dsp are considered in Figure S.5 for a fair comparison; the σ-profiles for

the COSMO-SAC-dsp predictions were taken from Ref.15
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Figure S.5: Mean absolute error (MAE, left) and mean squared error (MSE, right) of the pre-
dictions for ln γij for binary systems from the test set with MCM-UNIQUAC and COSMO-
SAC-dsp14,15 in histogram representations. The deviations were calculated by comparing the
predictions to the respective experimental values from the DDB. The shown ranges for the
MAE (left) cover 99.3% of all systems for MCM-UNIQUAC and 99.1% for COSMO-SAC-
dsp. The shown ranges for the MSE (right) cover 96.8% of all systems for MCM-UNIQUAC
and 96.2% for COSMO-SAC-dsp.

The left panel of Figure S.5 shows the MAE of MCM-UNIQUAC and COSMO-SAC-dsp

for each binary system as calculated by comparing the predictions for ln γij to the respective

experimental data from the DDB, whereas the right panel shows the respective results for

the MSE of both methods. Again, we find a better performance of MCM-UNIQUAC, which

predicts more systems with smaller MAE and MSE. The average MAE is 0.177 for MCM-

UNIQUAC and 0.193 for COSMO-SAC-dsp, the average MSE is 0.354 for MCM-UNIQUAC

and 0.491 for COSMO-SAC-dsp. For comparison, the average MAE over all systems from

the test set that can be predicted with UNIFAC, cf. Figure S.3, is 0.222 for MCM-UNIQUAC

and 0.298 for UNIFAC; the respective MSE scores are 0.380 for MCM-UNIQUAC and 0.917

for UNIFAC.

While the scores of MCM-UNIQUAC are better than that of both baselines throughout,

COSMO-SAC-dsp shows better results for the MAE and MSE compared to UNIFAC here.

However, note that the scopes of UNIFAC and COSMO-SAC-dsp are different: with the

current version of UNIFAC 78.8% of the systems form the test set can be predicted, while
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this is the case for only 73.3% of the systems with COSMO-SAC-dsp based on the σ-profiles

reported in Ref.15 And there are in general systems from the test set that can only be modeled

by either UNIFAC or COSMO-SAC-dsp; the fact that also the scores of MCM-UNIQUAC

are lower for the ’COSMO-SAC-dsp set’, cf. Figure S.5, than for the ’UNIFAC set’, cf.

Figure S.3, indicates that UNIFAC covers at least some systems that are more difficult to

describe. However, we consider a more detailed discussion of the advantages of UNIFAC

over COSMO-SAC-dsp and vice versa out of the scope of the present work.

Influence of the Number of Training Data

In Figure S.6, we evaluate the influence of the number of training data points for each

component on the predictive accuracy of MCM-UNIQUAC. Therefore, the MAE (left) and

the MSE (right) of the MCM-UNIQAC predictions for the binary systems i − j from the

test set are plotted as a function of the minimum number of systems in the training set,

in which the components i and j are present, which is called min(N
(s)
i , N

(s)
j ) here. Hence,

for small min(N
(s)
i , N

(s)
j ), there are, at least for one of the components i and j, only few

systems in the training set containing this component; on the other hand, if min(N
(s)
i , N

(s)
j )

is large, both i and j are well represented in the training set. We can observe a clear trend

of decreasing MAE and MSE with increasing min(N
(s)
i , N

(s)
j ), with the most severe outliers

for binary systems with very small min(N
(s)
i , N

(s)
j ).
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Figure S.6: Mean absolute error (MAE, left) and mean squared error (MSE, right) of the
predictions of MCM-UNIQUAC for ln γij in the binary systems from the test set as a function

of min(N
(s)
i , N

(s)
j ), where N

(s)
i (N

(s)
j ) is the number of binary systems containing component

i (j) in the training set. The deviations were calculated by comparing the predictions to the
experimental data from the DDB. The shown ranges cover all systems from the test set.

Information on the 20 systems from the test set with the largest MAE is additionally

summarized in Table S.1. Most of these systems include water, which is the most frequently

studied component in our data set, and a second component that is very rarely studied and

therefore rather poorly represented in the training set. We can therefore attribute the poor

performance of MCM-UNIQUAC for some systems to two reasons: first, there are rather

few training data points for at least one of the components, and second, water is one of

the components (note that even for the system hexane + water, where for both components

many training data were available, relatively large deviations are observed, cf. labeled point

in Figure S.6). While the first reason is quite obvious for a model that relies only on the

available mixture data, from which it infers, during the training, the characteristics (the

features) of the constituent pure components, we can explain the second reason by the

’extreme’ nature of water. Water can lead to both extremely small and extremely large

activity coefficients, depending on the type of component it is mixed with. To fully capture

this behavior, a complex and flexible model would be required, which could, however, easily

be overfitting for less studied and less ’extreme’ components. Our goal here was to develop a
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comprehensive model with the greatest possible scope, which apparently comes at the cost of

some deficiencies for aqueous systems. It will be interesting to develop more specified models

in future work, e.g., concentrating on highly polar components, and compare the results to

those of the wide-ranging model we provide here.

Table S.1: Binary systems i−j from the test set with the largest mean absolute error (MAE)

of the predictions with MCM-UNIQUAC. N
(s)
i and N

(s)
j denote the number of systems in

the training set that include the component i or j, respectively.

Component i Component j N
(s)
i N

(s)
j

MAE

2-Methylhexane Water 1 382 6.69
Isoamyl propionate Water 2 382 6.36
Bromocyclohexane Water 6 382 6.20
4-Chloronitrobenzene Water 1 382 5.92
m-Nitrotoluene Water 1 382 5.09
2-Chloropropane Water 2 382 3.92
1,4-Cyclohexadiene Deuterium oxide 1 14 3.87
1-Phenyldodecane Hexafluorobenzene 5 13 3.75
Piperidine Water 5 382 3.56
Hexadecylcyclohexane Phenol 1 81 3.52
Hydrogen fluoride Water 2 382 3.20
Tetradecane Water 24 382 3.19
Mono-n-butyl phosphate Acetone 5 183 3.03
Hexadecylcyclohexane Triethylene glycol 1 66 2.99
Hydrogen chloride Water 1 382 2.99
Sulfur dioxide Hexane 1 362 2.95
2-Methylheptane N-Formylmorpholine 2 59 2.92
Di-n-propyl ether Water 18 382 2.67
D-(+)-Limonene Water 6 382 2.63
Xylene Water 2 382 2.58

MCM-UNIQUAC based on Pair-Interaction Parameters ∆U

In Figure S.7, the results of a version of MCM-UNIQUAC based on the asymmetric pair-

interaction parameters (∆U), which are typically considered when UNIQUAC is applied, for

the prediction of the ln γij from the training and the test set are shown. For both sets, the

MAE and the MSE averaged over binary systems are considered. The scores are slightly

worse than that of the version of MCM-UNIQUAC discussed in the manuscript, which is
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based on the symmetric pair-interaction energies U , cf. Figure 2 in the manuscript and

Figure S.2.
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Figure S.7: Mean absolute error (MAE, left) and mean squared error (MSE, right) of a
variant of MCM-UNIQUAC based on pair-interaction parameters (∆U) on the training set
and on the test set indicated as bars. The lines denote the baselines obtained by directly
fitting UNIQUAC pair-interaction parameters (∆U , dotted) or pair-interaction energies (U ,
dashed) to all available data points. Error bars denote standard errors of the means.

Complete UNIQUAC Parameter Set

In a separate file, we provide a complete set of the pair-interaction energies U (including

uncertainties in the form of standard deviations) of UNIQUAC for all combinations of the

considered 1146 components as predicted by MCM-UNIQUAC after training on all exper-

imental data points, i.e., without withholding data points for validation and testing (no

results for this scenario are shown above or in the manuscript). The hyperparameters were

thereby set based on the model selection procedure to the values described above. From

these pair-interaction energies, the commonly used pair-interaction parameters ∆U of UNI-

QUAC can easily be calculated following Eq. (3) in the manuscript. This parameter set can

be used for the prediction of activity coefficients in any binary and multicomponent system

of the considered components, even if no experimental data points on this system (and the
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constituent binary subsystems) are available. However, we note that the predictions should

be used with caution, in particular if components or systems are considered that have only

been sparsely examined in experiments.

Studied Components

In the above mentioned file, we also provide an overview over all studied components, in-

cluding CAS numbers (if available) and chemical formulae.
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(9) Zhang, C.; Bütepage, J.; Kjellström, H.; Mandt, S. Advances in Variational Inference.

IEEE Transactions on Pattern Analysis and Machine Intelligence 2018, 41, 2008–2026.

(10) Kucukelbir, A.; Tran, D.; Ranganath, R.; Gelman, A.; Blei, D. M. Automatic Differen-

tiation Variational Inference. Journal of Machine Learning Research 2017, 1–45.

(11) Carpenter, B.; Gelman, A.; Hoffman, M. D.; Lee, D.; Goodrich, B.; Betancourt, M.;

Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A Probabilistic Programming Language.

Journal of Statistical Software 2017, 1–32.

(12) Weidlich, U.; Gmehling, J. A Modified UNIFAC Model. 1. Prediction of VLE, hE, and

γ∞. Industrial & Engineering Chemistry Research 1987, 26, 1372–1381.

(13) Constantinescu, D.; Gmehling, J. Further Development of Modified UNIFAC (Dort-

mund): Revision and Extension 6. Journal of Chemical & Engineering Data 2016, 61,

2738–2748.

(14) Hsieh, C.-M.; Lin, S.-T.; Vrabec, J. Considering the Dispersive Interactions in the

COSMO-SAC Model for More Accurate Predictions of Fluid Phase Behavior. Fluid

Phase Equilibria 2014, 367, 109–116.

(15) Bell, I. H.; Mickoleit, E.; Hsieh, C.-M.; Lin, S.-T.; Vrabec, J.; Breitkopf, C.; Jäger, A. A
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