Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

**Electronic supplementary information** 

## Molecular planting of a single organothiol into a "gap-site" of a 2D patterned adlayer in an electrochemical environment

Soichiro Yoshimoto,<sup>a,\*</sup> Hiroto Ogata<sup>b</sup>

<sup>a</sup> Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku,

Kumamoto 860-8555, Japan

<sup>b</sup> Graduate School of Science & Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku,

Kumamoto 860-8555, Japan

## Experimental

*Materials* Ovalene was purchased from Chiron AS (purity: 99.5%). Benzene (Spectroscopy Grade) and perchloric acid (ultrapure grade, Cica-Merck) were purchased from Kanto Chemical Co. Ltd. (Tokyo, Japan). 3-Mercaptopropionic acid (99.9%) and aldrithiol-4 (4,4'-dipyridyldisulfide; 98%) were purchased from Sigma-Aldrich Japan, and 4-mercaptopyridine (97%) was acquired from Tokyo Chemical Industry (Tokyo, Japan). 2-Mecaptopyrazine (2-PyzSH) was obtained from Angene International (98%; China). All chemicals were used without further purification.

*Sample Preparation* The Au(111) single-crystal electrode was prepared as described in our previous papers.<sup>s1</sup> Prior to immersion, the Au(111) substrate was annealed in a hydrogen flame and cooled down in a ultrapure water to prevent any contaminations.<sup>s1</sup> An ovalene adlayer was formed by immersing a Au(111) substrate in a benzene solution saturated with ovalene at room temperature for 15–20 min. The ovalene adlayer thus produced was transferred into an electrochemical STM cell filled with 0.05–0.10 M HClO<sub>4</sub> after it was washed thoroughly with ultrapure water. A 10–50  $\mu$ M aqueous solution of 3-MPA, 4-PySH, and 2-PyzSH was added to EC-STM cell under potential control at potentials between 0.25 and 0.20 V vs. RHE to form a special ovalene adlayer on Au(111). The final concentration of each solution was less than approximately 0.1  $\mu$ M in the EC-STM cell.

*EC-STM Measurements* Electrochemical STM measurements were performed in 0.1 M HClO<sub>4</sub> by using either a Nanoscope E (Digital Instruments, Santa Barbara) or Nanoscope V (Bruker, Billerica) systems with a tungsten tip etched in 1 M KOH. To minimize residual faradaic currents, the tips were coated with either nail polish.<sup>s2</sup> STM images were obtained in constant-current mode with a high-resolution scanner (HD-0.5I). All potential values (both substrate and tip) refer to the reversible hydrogen electrode (RHE).

## References

- s1 J. Clavilier, R. Faure, G. Guinet and R. Durand, J. Electroanal. Chem. Interfacial Electrochem., 1980, 107, 205–209.
- s2 S. Yoshimoto and K. Itaya, Annu. Rev. Anal. Chem., 2013, 6, 213–235.



Fig. S1 Cross-sectional profiles for three directions of the STM image observed at 0.78 V vs. RHE.



Fig. S2 Cross-sectional profiles for three directions of the STM image observed at 0.25 V vs. RHE.



Fig. S3 | Time-dependent ECSTM images of ovalene adlayer on Au(111) in 0.1 M HClO<sub>4</sub> in the presence of 50  $\mu$ M 3-MPA. STM image was taken in b), 13 min, c), 23 min, d), 36 min, and e), 90 min, respectively, after panel a) was observed at 0.25 V versus RHE in 0.1 M HClO<sub>4</sub>. The tip potential and tunneling current were 0.39 V and 0.50 nA, respectively.



Fig. S4 | Coronene adlayer in the presence of 3-MPA. EC-STM images of a) Large-scale (100  $\times$  100 nm<sup>2</sup>) and b) high-resolution (10  $\times$  10 nm<sup>2</sup>) STM images of coronene adlayer on Au(111) on Au(111) at 0.25 V versus RHE in 0.1 M HClO<sub>4</sub> in the presence of 3-MPA. The tip potential and tunneling current were 0.40 V and 3.0 nA, respectively.



Fig. S5 | Replacement of coronene adlayer with 3-MPA. a) Large-scale (75  $\times$  75 nm<sup>2</sup>) and b) high-resolution (25  $\times$  25 nm<sup>2</sup>) STM images of coronene adlayer on Au(111) at 0.60 V versus RHE in 0.1 M HClO<sub>4</sub> in the presence of 3-MPA. The tip potential and tunneling current were 0.40 V and 2.0 nA, respectively.



**Fig. S6 | Ovalene adlayer in the presence of PySSPy.** High-resolution STM image of ovalene adlayer on Au(111) at 0.25 V versus RHE in 0.1 M HClO<sub>4</sub>. The tip potential and tunneling current were 0.40 V and 2.5 nA, respectively.