Supplementary Information

Stereodivergent Synthesis of Enantioenriched Azepino[3,4,5-*cd*]-Indoles via Cooperative Cu/Ir-Catalyzed Asymmetric Allylic Alkylation and Intramolecular Friedel-Crafts Reaction

Lu Xiao,^{1,2,4} Bo Li,^{3,4} Fan Xiao,¹ Cong Fu,¹ Liang Wei,¹ Yanfeng Dang,³* Xiu-Qin Dong,¹* Chun-Jiang Wang^{1,2}*

¹College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China; ²State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, China; ³Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Tianjin University, Tianjin 300072, China; ⁴These two authors contributed equally

E-mail: yanfeng.dang@tju.edu.cn (Y.D.); xiuqindong@whu.edu.cn (X.-Q.D.); cjwang@whu.edu.cn (C.-J.W.)

Table of Contents

1. General Remarks	S2
2. Preparation and characterization data of 4-indolyl allyl carbonates	S2
3. General Procedures and Characterization for Azepino[3,4,5- <i>cd</i>]-Indoles	S8
4. Scale-Up Experiments and Synthetic Transformation	S40
5. TFA-Promoted C9-Epimerization of 6,9- <i>cis</i> - 3a	S44
6. One-pot allylation/cyclization/epimerization with TFA as the cyclization promoter	S48
7. References	S49
8. X-ray Structures of (6 <i>S</i> ,7 <i>S</i> ,9 <i>R</i>)- 3a , (6 <i>R</i> ,7 <i>R</i> ,9 <i>R</i>)- 3a , and (6 <i>R</i> ,7 <i>S</i> ,9 <i>R</i>)- 3a	S50
9. NMR and HPLC Spectra.	

1. General Remarks

¹H NMR spectra were recorded on a Bruker Mercury 400 MHz spectrometer in CDCl₃. Chemical shifts are reported in ppm with the internal TMS signal at 0.0 ppm as a standard. The data were reported as (s = single, d = double, t = triple, q = quartet, m = multiple or unresolved, and brs = broad single). ¹³C NMR spectra were recorded on a Bruker 100 MHz spectrometer in CDCl₃. Chemical shifts were reported in ppm with the internal chloroform signal at 77.0 ppm as a standard. ¹⁹F NMR spectra were recorded on a Bruker 376 MHz spectrometer in CDCl₃. Chemical shifts were reported in ppm with the internal CF₃COOH signal at -76.55 ppm. The data were reported as (s = single, d = $\frac{1}{2}$ double, t = triple, q = quarter, m = multiple or unresolved, br s = broad single, coupling constant (s) in Hz, integration). Commercially available reagents were used without further purification. Solvents were purified prior to use according to the standard methods. Unless otherwise stated, all reactions were set up under nitrogen atmosphere in oven-dried glassware using standard Schlenk techniques, monitored by TLC with silica-gel coated plates and purified by flash column chromatography. The enantiomeric excesses (ee) of the products were determined by high-performance liquid chromatography (HPLC) analysis performed on Agilent 1200 Series chromatographs using a Diacel chiral column (25 cm). Optical rotations were measured on an Rudolph Research Analytical Autopol VI polarimeter with $[\alpha]^{30}$ values reported in degrees; concentration (c) is in 0.5 g/100 mL. Aldimine esters,¹ 4-indolyl allylic carbonates² chiral ligands L1-L3³, L4⁴, L5⁵ and L6⁶ were prepared according to the literature procedure. The racemic products were obtained by blending equal amount of two enantiomers. The absolute configuration of the products (6S,7S,9R)-3a, (6R,7R,9R)-3a, and (6R,7S,9R)-3a were assigned by X-ray diffraction analysis.

2. Preparation and characterization data of 4-indolyl allyl carbonates 2

In general, 4-indolyl allyl carbonates **2** were prepared according to the procedure as shown below.²

MeO₂CO

(*E*)-methyl (3-(1-methyl-1*H*-indol-4-yl)allyl) carbonate (2a): Yield (88% yield, overall 3 steps); white solid; m.p. 66-68 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.15 (m, 3H), 7.12 – 7.01 (m, 2H), 6.68 – 6.64 (m, 1H), 6.52 – 6.42 (m, 1H), 4.86 (dd, *J* = 6.4, 1.2 Hz, 2H), 3.80 (s, 3H), 3.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 137.0, 133.7, 129.2, 128.3, 126.7, 122.8, 121.5, 117.7, 109.2, 99.3, 69.0, 54.7, 32.9. HRMS (ESI+) Calcd. For C₁₄H₁₆NO₃⁺ ([M+H]⁺): 246.1125, found: 246.1123. IR (thin film) *v* (cm⁻¹) 3054, 2986, 2305, 1748, 1442, 1265, 969, 739.

(*Z*)-methyl (3-(1-methyl-1*H*-indol-4-yl)allyl) carbonate⁷ (2a'): Yield (93% yield, from the corresponding allyl alcohol); colorless liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.25 (m, 1H), 7.23 – 7.17 (m, 1H), 7.06 (d, *J* = 3.2 Hz, 1H), 7.03 (s, 1H), 6.94 (d, *J* = 7.2 Hz, 1H), 6.47 (dd, *J* = 3.2, 0.4 Hz, 1H), 5.95 (dt, *J* = 11.6, 6.4 Hz, 1H), 4.92 (dd, *J* = 6.4, 1.6 Hz, 2H), 3.78 (s, 3H), 3.77 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 136.6, 131.6, 128.9, 128.1, 127.5, 125.1, 121.3, 119.5, 108.9, 99.5, 65.4, 54.7, 32.9. IR (thin film) *v* (cm⁻¹) 3054, 2986, 2304, 1748, 1421, 1265, 896, 740.

(*E*)-3-(5-fluoro-1-methyl-1*H*-indol-4-yl)allyl methyl carbonate (2x): Yield (86% yield, overall 3 steps); white solid; m.p. 58-60 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.18 – 7.13 (m 1H), 7.12 (d, *J* = 3.2 Hz, 1H), 7.10 – 7.02 (m, 1H), 6.96 (dd, *J* = 11.2, 8.8 Hz, 1H), 6.66 (dd, *J* = 3.2, 0.8 Hz, 1H), 6.64 – 6.57 (m, 1H), 4.88 (dd, *J* = 6.4, 1.2 Hz, 2H), 3.82 (s, 3H), 3.78 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.9 (d, *J* = 235.6 Hz), 155.7, 133.4, 130.6, 126.97 (dd, *J* = 21.2, 4.0 Hz), 126.29 (d, *J* = 7.2 Hz), 114.22 (d, *J* = 13.6 Hz), 110.3, 110.0, 109.63 (d, *J* = 10.6 Hz), 100.11 (d, *J* = 5.2 Hz), 69.3, 54.8, 33.1. ¹⁹F NMR (376 MHz, CDCl₃) δ -127.2. HRMS (ESI+) Calcd. For C₁₄H₁₄FNNaO₃⁺ ([M+Na]⁺): 286.0850, found: 386.0847. IR (thin film) *v* (cm⁻¹) 3054, 2986, 2305, 1750, 1442, 1265, 869, 740.

(*E*)-3-(6-fluoro-1-methyl-1*H*-indol-4-yl)allyl methyl carbonate (2y): Yield (89% yield, overall 3 steps); yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.29 – 7.27 (m, 1H), 7.05 (dd, *J* = 8.8, 1.6 Hz, 1H), 7.02 – 6.98 (m, 1H), 6.99 – 6.95 (m, 1H), 6.50 – 6.47 (m, 1H), 6.47 – 6.39 (m, 1H), 4.86 (dd, *J* = 6.4, 1.2 Hz, 2H), 4.06 (s, 3H), 3.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.04 (d, *J* = 239.0 Hz), 155.6, 132.07 (d, *J* = 12.8 Hz), 131.25 (d, *J* = 2.4 Hz), 129.86 (d, *J* = 9.6 Hz), 124.9, 123.51 (d, *J* =

3.6 Hz), 119.0, 106.24 (d, *J* = 25.2 Hz), 96.6, 94.53 (d, *J* = 27.6 Hz), 68.4, 65.9, 54.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -119.9. IR (thin film) *v* (cm⁻¹) 3054, 2986, 2305, 1749, 1442, 1265, 949, 740.

(*E*)-3-(7-fluoro-1-methyl-1*H*-indol-4-yl)allyl methyl carbonate (2z): Yield (87% yield, overall 3 steps); white solid; m.p. 64-66 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 6.94 (m, 3H), 6.86 – 6.78 (m, 1H), 6.70 – 6.65 (m, 1H), 6.44 – 6.23 (m, 1H), 4.90 – 4.80 (m, 2H), 3.99 (s, 3H), 3.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 150.35 (d, *J* = 245.6 Hz), 132.9, 130.8, 130.70 (d, *J* = 5.6 Hz), 124.60 (d, *J* = 14.0 Hz), 122.2, 118.11 (d, *J* = 6.8 Hz), 107.24 (d, *J* = 18.6 Hz), 107.24 (d, *J* = 18.6 Hz), 100.3, 69.0, 54.8, 35.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -136.6. HRMS (ESI+) Calcd. For C₁₄H₁₄FNNaO₃⁺ ([M+Na]⁺): 286.0850, found: 386.0847. IR (thin film) *v* (cm⁻¹) 3054, 2986, 2305, 1748, 1442, 1265, 896, 739.

(*E*)-3-(6-bromo-1-methyl-1*H*-indol-4-yl)allyl methyl carbonate (2A): Yield (89% yield, overall 3 steps); white solid; m.p. 60-62 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.42 – 7.38 (m, 1H), 7.35 – 7.32 (m, 1H), 7.06 (d, *J* = 3.2 Hz, 1H), 6.98 (d, *J* = 16.0 Hz, 1H), 6.61 (dd, *J* = 3.2, 0.8 Hz, 1H), 6.50 – 6.40 (m, 1H), 4.86 (dd, *J* = 6.4, 1.2 Hz, 2H), 3.82 (s, 3H), 3.76 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 137.8, 131.9, 129.8, 127.8, 125.7, 124.4, 120.4, 115.2, 112.0, 99.7, 68.6, 54.8, 33.1. HRMS (ESI+) Calcd. For C₁₄H₁₄^{78.9183}BrNO₃⁺ ([M+H]⁺): 346.0049, found: 346.0047; C₁₄H₁₄^{80.9163}BrNO₃⁺ ([M+H]⁺): 348.0029, found: 348.0030. IR (thin film) *v* (cm⁻¹) 3054, 2986, 2305, 1750, 1442, 1264, 896, 744.

(*E*)-methyl (3-(1-methyl-6-phenyl-1*H*-indol-4-yl)allyl) carbonate (2B): Yield (85% yield, overall 3 steps); white solid; m.p. 80-82 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.72 – 7.64 (m, 2H), 7.49 – 7.41 (m, 4H), 7.36 – 7.30 (m, 1H), 7.16 – 7.08 (m, 2H), 6.67 (d, *J* = 3.2 Hz, 1H), 6.58 – 7.48 (m, 1H), 4.89 (dd, *J* = 6.4, 1.2 Hz, 2H), 3.83 (s, 3H), 3.82 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 142.2, 137.6, 135.3, 133.6, 129.9, 128.7, 128.5, 127.4, 126.7, 126.0, 123.3, 117.8, 107.8, 99.4, 69.0, 54.8, 33.0. HRMS (ESI+) Calcd. For C₂₀H₁₉NNaO₃⁺ ([M+Na]⁺): 344.1257, found: 344.1254. IR (thin film) *v* (cm⁻¹) 3054, 2986, 2305, 1748, 1442, 1265, 895, 739.

(*E*)-methyl (3-(1-methyl-6-vinyl-1*H*-indol-4-yl)allyl) carbonate (2C): Yield (86% yield, overall 3 steps); yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.26 (m, 2H), 7.08 (d, *J* = 3.2 Hz, 1H), 7.05 (d, *J* = 16.0 Hz, 1H), 6.83 (dd, *J* = 17.6, 10.8 Hz, 1H), 6.62 (dd, *J* = 3.2, 0.8 Hz, 1H), 6.52 – 6.44 (m, 1H), 5.77 (dd, *J* = 17.6, 0.8 Hz, 1H), 5.25 – 5.14 (m, 1H), 4.87 (dd, *J* = 6.4, 1.2 Hz, 2H), 3.81 (s, 3H), 3.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 137.6, 137.3, 133.5, 131.5, 130.0, 128.3, 126.6, 123.2, 116.3, 112.0, 107.3, 99.6, 68.9, 54.8, 32.9. HRMS (ESI+) Calcd. For C₁₆H₁₇NNaO₃⁺ ([M+H]⁺): 294.1101, found: 294.1097. IR (thin film) *v* (cm⁻¹) 3054, 2986, 2305, 1748, 1442, 1265, 896, 739.

(*E*)-3-(6-cyclopropyl-1-methyl-1*H*-indol-4-yl)allyl methyl carbonate (2D): Yield (88% yield, overall 3 steps); yellow liquid, ¹H NMR (400 MHz, CDCl₃) δ 7.10 – 6.94 (m, 4H), 6.58 (d, *J* = 3.2 Hz, 1H), 6.50 – 6.40 (m, 1H), 4.85 (dd, *J* = 6.4, 1.2 Hz, 2H), 3.81 (s, 3H), 3.74 (s, 3H), 2.07 – 1.97 (m, 1H), 1.02 – 0.90 (m, 2H), 0.78 – 0.67 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 137.5, 137.4, 133.8, 128.8, 128.0, 124.9, 122.8, 116.7, 106.4, 99.2, 69.1, 54.8, 32.9, 29.7, 15.8, 8.8. HRMS (ESI+) Calcd. For C₁₇H₁₉NNaO₃⁺ ([M+Na]⁺): 308.1257, found: 308.1254. IR (thin film) *v* (cm⁻¹) 3054, 2986, 2305, 1748, 1422, 1265, 896, 740.

(*E*)-3-(1-allyl-1*H*-indol-4-yl)allyl methyl carbonate (2E): Yield (84% yield, overall 3 steps); yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 7.28 – 7.20 (m, 2H), 7.20 – 7.16 (m, 1H), 7.15 – 7.12 (m, 1H), 7.08 (d, *J* = 16.0 Hz, 1H), 6.70 (d, *J* = 3.2 Hz, 1H), 6.52 – 6.40 (m, 1H), 6.05 – 5.84 (m, 1H), 5.19 (dd, *J* = 10.4, 1.2 Hz, 1H), 5.11 – 5.01 (m, 1H), 4.87 (dd, *J* = 6.6, 1.2 Hz, 2H), 4.74 – 4.70 (m, 2H), 3.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 136.4, 133.6, 133.3, 128.4, 128.3, 126.9, 122.9, 121.6, 117.8, 117.3, 109.6, 99.8, 69.0, 54.8, 48.9. HRMS (ESI+) Calcd. For C₁₆H₁₈NO₃⁺ ([M+H]⁺): 272.1281, found: 264.0788. HRMS (ESI+) Calcd. For C₁₆H₁₇NNaO₃⁺ ([M+Na]⁺): 294.1101, found: 294.1098. IR (thin film) *v* (cm⁻¹) 3054, 2986, 2306, 1747, 1442, 1265, 941, 740.

MeO₂CO

(*E*)-3-(1-benzyl-1*H*-indol-4-yl)allyl methyl carbonate (2F): Yield (86% yield, overall 3 steps); white solid; m.p. 78-80 °C, ¹H NMR (400 MHz, CDCl₃) δ 7.31 – 7.26 (m, 3H), 7.25 – 7.20 (m, 2H),

7.18 (d, J = 3.2 Hz, 1H), 7.16 – 7.05 (m, 4H), 6.74 (d, J = 3.2 Hz, 1H), 6.50 – 6.44 (m, 1H), 5.33 (s, 2H), 4.87 (dd, J = 6.4, 1.2 Hz, 2H), 3.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.8, 137.4, 136.7, 133.6, 128.8, 128.5, 127.7, 127.0, 126.7, 123.0, 121.8, 118.0, 109.8, 100.1, 69.1, 54.8, 50.2. HRMS (ESI+) Calcd. For C₂₀H₁₉NNaO₃⁺ ([M+Na]⁺): 344.1257, found: 344.1255. IR (thin film) v (cm⁻¹) 3054, 2986, 2305, 1748, 1422, 1265, 896, 740.

MeO₂CO

(*E*)-3-(1*H*-indol-4-yl)allyl methyl carbonate (2G): Yield (80% yield, overall 3 steps); yellow liquid; ¹H NMR (400 MHz, CDCl₃) δ 8.29 (s, 1H), 7.33 (d, *J* = 8.0 Hz, 1H), 7.26 – 7.22 (m, 2H), 7.20-7.14 (m, 1H), 7.09 (d, *J* = 16.0 Hz, 1H), 6.75 – 6.72 (m, 1H), 6.55 – 6.40 (m, 1H), 4.87 (dd, *J* = 6.4, 1.2 Hz, 2H), 3.81 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 155.7, 136.1, 133.7, 128.3, 126.1, 124.6, 122.9, 122.0, 118.1, 111.0, 101.0, 69.0, 54.8. HRMS (ESI+) Calcd. For C₁₃H₁₃NNaO₃⁺ ([M+Na]⁺): 254.0788, found: 254.0787. IR (thin film) ν (cm⁻¹) 3365, 3054, 2986, 2305, 1747, 1422, 1265, 896, 739.

3. General Procedures and Characterization for Azepino[3,4,5-cd]-Indoles

A flame dried Schlenk tube A was cooled to room temperature and filled with N₂. To this flask were added $[Ir(COD)Cl]_2$ (0.005 mmol), (*S*,*S*,*S*)-L5 (0.010 mmol), degassed THF (0.5 mL) and

degassed *n*-propylamine (0.5 mL). The reaction mixture was heated at 50 °C for 30 min and then the volatile solvents were removed under vacuum to gain a pale-yellow solid. Meanwhile, Cu(MeCN)₄BF₄ (0.01 mmol) and (S,S_p) -^{*i*}Pr-Phosferrox-L1 (0.011 mmol) were dissolved in 1.0 mL of DCE in a Schlenk tube B, and stirred at room temperature for about 40 min. Then, aldimine ester 1 (0.30 mmol), 4-indolyl allylic carbonate 2 (0.20 mmol) and K₂CO₃ (0.40 mmol) were added into the Schlenk tube A and filled with N2. The Cu/L1 complex solution was then transferred from the Schlenk tube **B** to the Schlenk tube **A** via syringe. Finally, the reaction mixture was continuously stirred at room temperature under N₂ atmosphere. Once starting material was consumed (monitored by TLC), the residue was separated by flash column chromatography to give the crude product. The crude product was dissolved in dichloromethane and two equivalent of the corresponding aldehyde and Zn(OTf)₂ (50 mol%) were added. Once starting material was consumed (monitored by TLC), the reaction was quenched with 1 mol of HCl solution (1 mL). The layers were separated, and the aqueous layer was extracted with DCM (5 mL x 3). The combined organic components were washed with saturated brine (10 mL), dried over anhydrous Na₂SO₄, filtration and evaporated in vacuum. After evaporation of the solvent under vacuum, the crude mixture was flushed with short silica gel plug to remove the metal complex and the diastereoselectivity was determined with ¹H NMR analysis. Then, the whole residue was further purified by column chromatography to give the desired product, which was then directly analyzed by HPLC to determine the enantiomeric excess.

Characterization for Azepino[3,4,5-cd]-Indoles:

Methyl (6*S*,7*S*,9*R*)-9-(4-chlorophenyl)-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3a)

Yield (67%); 18:1 dr; white solid; m.p. 198-200 °C; $[\alpha]^{30}_{D} = 63.0$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 8.4 Hz, 2H), 7.19 – 7.12 (m, 1H), 7.12 – 7.06 (m,

1H), 6.98 – 6.92 (m, 1H), 6.41 – 6.30 (m, 1H), 6.16 (s, 1H), 5.79 (s, 1H), 5.19 (dd, J = 17.2, 2.0 Hz, 1H), 5.10 (dd, J = 10.0, 2.0 Hz, 1H), 4.35 (d, J = 9.6 Hz, 1H), 3.59 (s, 3H), 3.58 (s, 3H), 1.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.4, 144.1, 138.2, 136.9, 134.8, 132.9, 129.5, 128.5, 125.9, 124.9, 122.0, 120.0, 118.9, 116.5, 107.2, 64.9, 56.7, 56.4, 51.7, 32.6, 26.5. HRMS (ESI+) Calcd. For C₂₃H₂₄^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 395.1521, found: 395.1518; C₂₃H₂₄^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 397.1491, found: 397.1498. IR (thin film) ν (cm⁻¹) 3334, 3047, 2929, 1727, 1576, 1486, 1135, 1089, 745. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.66 and 6.18 min.

Methyl (6*R*,7*R*,9*S*)-9-(4-chlorophenyl)-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*R*,7*R*,9*S*)-3a)

Yield (62%); 17:1 dr; white solid; m.p. 198-200 °C; $[\alpha]^{30}_{D} = -61.4$ (*c* 0.50, CH₂Cl₂); HRMS (ESI+) Calcd. For C₂₃H₂₄^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 395.1521, found: 395.1521; C₂₃H₂₄^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 397.1491, found: 397.1497. IR (thin film) ν (cm⁻¹) 3329, 3053, 2945, 1734, 1606, 1487, 1241, 1109, 746. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.66 and 6.18 min.

Methyl (6*R*,7*S*,9*S*)-9-(4-chlorophenyl)-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*R*,7*S*,9*S*)-3a)

Yield (63%); 20:1 dr; white solid; m.p. 68-70 °C; $[\alpha]^{30}_{D} = -110.8$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.4 Hz, 2H), 7.32 (d, J = 8.4 Hz, 2H), 7.21 – 7.10 (m, 2H), 6.99 – 6.95 (m, 1H), 6.34 (ddd, J = 17.2, 10.4, 8.8 Hz, 1H), 6.23 (s, 1H), 5.32 (s, 1H), 5.03 (dd, J = 17.2, 1.6 Hz, 1H), 4.93 (dd, J = 10.4, 1.6 Hz, 1H), 4.16 (d, J = 8.8 Hz, 1H), 3.77 (s, 3H), 3.62 (s, 3H), 1.63 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.8, 144.5, 140.9, 137.0, 133.0, 132.8, 129.9, 128.5, 126.6, 124.7, 121.8, 121.3, 119.9, 114.4, 107.4, 64.8, 60.1, 56.1, 52.6, 32.7, 20.8. HRMS (ESI+) Calcd. For C₂₃H₂₄^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 395.1521, found: 395.1523; C₂₃H₂₄^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 397.1491, found: 397.1495. IR (thin film) ν (cm⁻¹) 3340, 2924, 2867, 1729, 1580, 1486, 1239, 1114, 746. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AS-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 230$ nm); t_r = 5.01 and 5.51 min.

Methyl (6*S*,7*R*,9*R*)-9-(4-chlorophenyl)-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*R*,9*R*)-3a)

Yield (66%); 20:1 dr; white solid; m.p. 68-70 °C; $[\alpha]^{30}_{D} = 107.4$ (*c* 0.50, CH₂Cl₂); HRMS (ESI+) Calcd. For C₂₃H₂₄^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 395.1521, found: 395.1519; C₂₃H₂₄^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 397.1491, found: 397.1490. IR (thin film) *v* (cm⁻¹) 3337, 3049, 2947, 1730, 1487, 1457, 1246, 1088, 748. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AS-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 230$ nm); t_r = 5.01 and 5.51 min.

Methyl (6*S*,7*S*,9*R*)-9-(4-bromophenyl)-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3b)

Yield (68%); 19:1 dr; white solid; m.p. 208-210 °C; $[α]^{30}D = 47.6$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.4 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 7.20 – 7.12 (m, 1H), 7.12 – 7.08 (m, 1H), 6.97 – 6.93 (m, 1H), 6.36 (ddd, J = 17.2, 10.4, 7.2 Hz, 1H), 6.17 (s, 1H), 5.79 (s, 1H), 5.20 (dd, J = 17.2, 1.6 Hz, 1H), 5.11 (dd, J = 10.4, 1.6 Hz, 1H), 4.36 (d, J = 9.6 Hz, 1H), 3.61 (s, 3H), 3.59 (s, 3H), 1.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.4, 144.6, 138.2, 136.9, 134.8, 131.4, 129.9, 125.9, 124.9, 122.0, 121.0, 119.9, 118.9, 116.5, 107.2, 65.0, 56.7, 56.5, 51.7, 32.7, 26.5. HRMS (ESI+) Calcd. For C₂₃H₂₄^{78.9183}BrN₂O₂⁺ ([M+H]⁺): 439.1016, found: 439.1013; C₂₃H₂₄^{80.9163}BrN₂O₂⁺ ([M+H]⁺): 441.0995, found: 441.0996. IR (thin film) ν (cm⁻¹) 3333, 3055, 2946, 1729, 1484, 1452, 1244, 1134, 745. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 6.02 and 6.75 min.

Methyl (6*S*,7*S*,9*R*)-9-(4-fluorophenyl)-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3c)

Yield (64%); 17:1 dr; white solid; m.p. 152-154 °C; $[\alpha]^{30}_{D} = 65.6$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.40 (m, 2H), 7.17 – 7.11 (m, 1H), 7.10 – 7.00 (m, 3H), 6.94 (d, *J* = 7.2 Hz, 1H), 6.36 (ddd, *J* = 17.2, 10.4, 7.2 Hz, 1H), 6.15 (s, 1H), 5.78 (s, 1H), 5.19 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.10 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.34 (d, *J* = 9.6 Hz, 1H), 3.59 (s, 3H), 3.58 (s, 3H), 1.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 162.0 (d, *J* = 241.0 Hz), 141.4, 138.4, 136.9, 134.9, 129.65 (d, *J* = 7.8 Hz), 125.9, 124.9, 122.0, 120.2, 118.9, 116.4, 115.1 (d, *J* = 21.8 Hz), 107.1, 64.9, 56.8, 56.4, 51.7,

32.6, 26.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.5. HRMS (ESI+) Calcd. For C₂₃H₂₄FN₂O₂⁺ ([M+H]⁺): 379.1816, found: 379.1813. IR (thin film) v (cm⁻¹) 3322, 3041, 2925, 1730, 1504, 1452, 1221, 1133, 746. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.18 and 5.62 min.

Methyl (6*S*,7*S*,9*R*)-9-(3-chlorophenyl)-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3d)

Yield (62%); 14:1 dr; white solid; m.p. 78-80 °C; $[\alpha]^{30}_{D} = 39.4$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.49(m, 1H), 7.43 – 7.37 (m, 1H), 7.33 – 7.27 (m, 2H), 7.20 – 7.13 (m, 1H), 7.12-7.08 (m, 1H), 6.96 – 6.93 (m, 1H), 6.37 (ddd, *J* = 17.2, 10.4, 7.2 Hz, 1H), 6.19 (s, 1H), 5.80 (s, 1H), 5.20 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.12 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.36 (d, *J* = 9.6 Hz, 1H), 3.61 (s, 3H), 3.59 (s, 3H), 1.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.4, 147.6, 138.2, 136.9, 134.8, 134.1, 129.6, 128.3, 127.4, 126.3, 125.9, 124.9, 122.0, 119.8, 118.9, 116.5, 107.2, 65.0, 60.1, 56.7, 51.7, 32.7, 26.4. HRMS (ESI+) Calcd. For C₂₃H₂₄^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 395.1521, found: 395.1516; C₂₃H₂₄^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 397.1491, found: 397.1503. IR (thin film) *v* (cm⁻¹) 3337, 3057, 2922, 1730, 1482, 1456, 1244, 1088, 747. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 4.62 and 4.96 min.

Methyl (6*S*,7*S*,9*R*)-9-(3-bromophenyl)-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3e)

Yield (70%); 16:1 dr; white solid; m.p. 128-130 °C; $[\alpha]^{30}_{D} = 52.4$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.66 (m, 1H), 7.49 – 7.44 (m, 2H), 7.26 – 7.23 (m, 1H), 7.21 – 7.15 (m, 1H), 7.14 – 7.10 (m, 1H), 6.99 – 6.94 (m, 1H), 6.39 (ddd, *J* = 17.2, 10.4, 7.2 Hz, 1H), 6.21 (s, 1H), 5.81 (s, 1H), 5.22 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.14 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.38 (d, *J* = 9.6 Hz, 1H), 3.63 (s, 3H), 3.61 (s, 3H), 1.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.4, 147.9, 138.2, 136.9, 134.8, 131.2, 130.4, 129.9, 126.8, 126.0, 124.9, 122.4, 122.0, 119.7, 118.9, 116.5, 107.2, 645.0, 56.7, 51.7, 32.7, 26.5, 22.8. HRMS (ESI+) Calcd. For C₂₃H₂₄^{78.9183}BrN₂O₂⁺ ([M+H]⁺): 439.1016, found: 439.1010; C₂₃H₂₄^{80.9163}BrN₂O₂⁺ ([M+H]⁺): 441.0996, found: 441.0996. IR (thin film) *v* (cm⁻¹) 3339, 3055, 2944, 1729, 1453, 1423, 1230, 1128, 746. The product was analyzed by HPLC to determine the enantiomeric excess: 98% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 4.68 and 5.15 min.

Methyl (6*S*,7*S*,9*R*)-2,7-dimethyl-9-phenyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino[3,4,5-*cd*] indole-7-carboxylate ((6*S*,7*S*,9*R*)-3f)

Yield (68%); 15:1 dr; white solid; m.p. 128-130 °C; $[α]^{30}D = 61.2$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.44 (m, 2H), 7.41 – 7.34 (m, 2H), 7.31 (m, 1H), 7.17 – 7.12 (m, 1H), 7.08 (d, J = 7.6 Hz, 1H), 6.94 (d, J = 7.2 Hz, 1H), 6.44 – 6.34 (m, 1H), 6.17 (s, 1H), 5.78 (s, 1H), 5.19 (dd, J = 17.2, 1.6 Hz, 1H), 5.10 (dd, J = 10.4, 1.6 Hz, 1H), 4.36 (d, J = 9.6 Hz, 1H), 3.59 (s, 3H), 3.58 (s, 3H), 1.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 142.0, 138.4, 136.9, 134.9, 128.3, 128.1, 127.3, 126.0, 125.1 121.9, 120.5, 118.8, 116.3, 107.1, 65.0, 57.1, 56.7, 51.7, 32.6, 26.5. HRMS (ESI+) Calcd. For C₂₃H₂₅N₂O₂⁺ ([M+H]⁺): 361.1911, found: 361.1907. IR (thin film) ν (cm⁻¹) 3341, 2923, 2854, 1730, 1452, 1420, 1231, 1133, 746. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.27 and 5.88 min.

Methyl (6*S*,7*S*,9*R*)-2,7-dimethyl-9-(*p*-tolyl)-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino[3,4,5-*cd*] indole-7-carboxylate ((6*S*,7*S*,9*R*)-3g)

Yield (60%); 12:1 dr; white solid; m.p. 118-120 °C; $[α]^{30}D = 86.6$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, J = 8.4 Hz, 2H), 7.18 (d, J = 8.4 Hz, 2H), 7.16 – 7.13 (m, 1H), 7.09 (d, J = 7.2 Hz, 1H), 6.95 (d, J = 7.2 Hz, 1H), 6.39 (ddd, J = 17.2, 10.4, 7.2 Hz, 1H), 6.20 (s, 1H), 5.75 (s, 1H), 5.20 (dd, J = 17.2, 1.6 Hz, 1H), 5.10 (dd, J = 10.4, 1.6 Hz, 1H), 4.35 (d, J = 9.6 Hz, 1H), 3.60 (s, 6H), 2.38 (s, 3H), 1.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 142.7, 138.5, 136.9, 136.8, 135.0, 129.0, 128.1, 126.0, 125.1, 121.9, 120.6, 118.7, 116.3, 107.1, 64.9, 56.8, 51.6, 32.6, 26.5, 21.2, 14.1. HRMS (ESI+) Calcd. For C₂₄H₂₇N₂O₂⁺ ([M+H]⁺): 375.2067, found: 375.2068. IR (thin film) ν (cm⁻¹) 3351, 2944, 2854, 1731, 1601, 1484, 1220, 1084, 751. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.62 and 6.57 min.

Methyl (6*S*,7*S*,9*R*)-9-(4-methoxyphenyl)-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3h)

Yield (66%); 18:1 dr; white solid; m.p. 126-128 °C; $[\alpha]^{30}_{D} = 85.0$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.39 (m, 2H), 7.18 – 7.12 (m, 1H), 7.09 (d, *J* = 7.2 Hz, 1H), 6.94 (d, *J* = 7.0 Hz, 1H), 6.93 – 6.87 (m, 2H), 6.38 (ddd, *J* = 17.2, 10.4, 7.2 Hz, 1H), 6.19 (s, 1H), 5.72 (s, 1H), 5.19 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.09 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.33 (d, *J* = 9.6 Hz, 1H), 3.83 (s, 3H), 3.60 (s, 3H), 1.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.6, 158.8, 138.6, 138.0, 137.0,

135.0, 129.2, 126.0, 125.0, 121.9, 120.6, 118.78, 116.2, 113.7, 107.1, 64.9, 56.9, 56.5, 55.3, 51.7, 32.6, 26.7. HRMS (ESI+) Calcd. For C₂₄H₂₇N₂O₃⁺ ([M+H]⁺): 391.2016, found: 391.2019. IR (thin film) v (cm⁻¹) 3342, 2946, 2863, 1730, 1609, 1510, 1243, 1177, 745. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 6.95 and 9.29 min.

Methyl (6*S*,7*S*,9*R*)-2,7-dimethyl-9-(*m*-tolyl)-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino[3,4,5-*cd*] indole-7-carboxylate ((6*S*,7*S*,9*R*)-3i)

Yield (58%); 15:1 dr; white solid; m.p. 124-126°C; $[\alpha]^{30}_{D} = 106.6$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.26 (m, 3H), 7.18 – 7.08 (m, 3H), 6.95 (d, *J* = 7.2 Hz, 1H), 6.40 (ddd, *J* = 17.2, 10.8, 7.2 Hz, 1H), 6.19 (s, 1H), 5.74 (s, 1H), 5.21 (dd, *J* = 17.2, 2.0 Hz, 1H), 5.11 (dd, *J* = 10.8, 2.0 Hz, 1H), 4.37 (d, *J* = 9.6 Hz, 1H), 3.61 (s, 3H), 3.60 (s, 3H), 2.38 (s, 3H), 1.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 145.4, 138.5, 137.9, 136.9, 135.0, 128.9, 128.2, 128.0, 126.0, 125.2, 121.9, 120.5, 118.8, 116.3, 107.1, 65.0, 57.1, 56.8, 51.7, 32.6, 26.5, 21.5. HRMS (ESI+) Calcd. For C₂₄H₂₇N₂O₂⁺ ([M+H]⁺): 375.2067, found: 375.2069. IR (thin film) ν (cm⁻¹) 3335, 2924, 2863, 1730, 1606, 1453, 1241, 1131, 746. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IC, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 8.20 and 9.78 min.

Methyl (6*S*,7*S*,9*R*)-9-(3-methoxyphenyl)-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3j)

Yield (61%); 16:1 dr; white solid; m.p. 122-124 °C; $[α]^{30}_D = 80.6$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.30 – 7.25 (m, 1H), 7.16 – 7.12 (m, 1H), 7.10 – 7.05 (m, 3H), 6.93 (d, *J* = 7.0 Hz, 1H), 6.86 – 6.82 (m, 1H), 6.37 (ddd, *J* = 17.2, 10.4, 7.2 Hz, 1H), 6.22 (s, 1H), 5.76 (s, 1H), 5.18 (dd, *J* = 17.2, 2.0 Hz, 1H), 5.09 (dd, *J* = 10.4, 2.0 Hz, 1H), 4.36 (d, *J* = 9.6 Hz, 1H), 3.80 (s, 3H), 3.58 (s, 6H), 1.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 159.6, 147.1, 138.4, 136.9, 134.9, 129.3, 126.0, 125.1, 121.9, 120.5, 120.2, 118.7, 116.4, 113.6, 112.7, 107.1, 65.0, 57.0, 56.7, 55.2, 51.7, 32.6, 26.4. HRMS (ESI+) Calcd. For C₂₄H₂₇N₂O₃⁺ ([M+H]⁺): 391.2016, found: 391.2019. IR (thin film) *v* (cm⁻¹) 3339, 2933, 2865, 1730, 1602, 1455, 1244, 1152, 1045, 748. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.87 and 6.67 min.

Methyl (6*S*,7*S*,9*R*)-2,7-dimethyl-9-(*o*-tolyl)-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino[3,4,5-*cd*] indole-7-carboxylate ((6*S*,7*S*,9*R*)-3k)

Yield (63%); 11:1 dr; white solid; m.p. 88-90 °C; $[\alpha]^{30}_{D} = 138.6$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.40 (m, 1H), 7.22 – 7.19 (m, 3H), 7.18 – 7.13 (m, 1H), 7.09 (d, *J* = 7.8 Hz, 1H), 6.94 (d, *J* = 7.2 Hz, 1H), 6.35 (ddd, *J* = 17.2, 10.4, 7.2 Hz, 1H), 6.06 (s, 1H), 5.98 (s, 1H), 5.20 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.10 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.62 – 4.30 (m, 1H), 3.62 (s, 3H), 3.58 (s, 3H), 2.48 (s, 3H), 1.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.4, 143.2, 138.1, 137.1, 135.1, 130.1, 128.4, 127.0, 126.2, 125.5, 125.2, 120.0, 120.5, 119.4, 118.6, 116.5, 107.2, 65.5, 60.4, 56.1, 51.7, 32.6, 25.5, 19.5. HRMS (ESI+) Calcd. For C₂₄H₂₇N₂O₂⁺ ([M+H]⁺): 375.2067, found: 375.2068. IR (thin film) *v* (cm⁻¹) 3358, 2919, 2850, 1733, 1633, 1454, 1241, 1114, 751. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 4.24 and 5.37 min.

Methyl (6S,7S,9R)-9-(2-chlorophenyl)-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2H-azepino

[3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3l)

Yield (66%); 15:1 dr; white solid; m.p. 148-150 °C; $[\alpha]^{30}_{D} = 83.2$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.56 (m, 1H), 7.44 – 7.40 (m, 1H), 7.29 – 7.26 (m, 1H), 7.26 – 7.21 (m, 1H), 7.19 – 7.14 (m, 1H), 7.10 (d, *J* = 7.4 Hz, 1H), 6.95 (d, *J* = 7.2 Hz, 1H), 6.44 – 6.30 (m, 1H), 6.35 (s, 1H), 6.18 (brs, 1H), 5.22 (dd, *J* = 17.2, 2.0 Hz, 1H), 5.14 (dd, *J* = 10.4, 2.0 Hz, 1H), 4.47 (d, *J* = 9.6 Hz, 1H), 3.64 (s, 3H), 3.61 (s, 3H), 1.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.2, 143.0, 137.9, 136.9, 134.7, 132.9, 130.3, 129.2, 128.2, 127.2, 125.3, 122.0, 119.5, 118.7, 116.8, 107.3, 65.4, 56.2, 52.6, 51.8, 32.7, 25.7. HRMS (ESI+) Calcd. For C₂₃H₂₄^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 397.1491, found: 397.1496. IR (thin film) *v* (cm⁻¹) 3334, 2925, 2853, 1724, 1633, 1451, 1250, 1119, 746. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.05 and 6.01 min.

Methyl (6*S*,7*S*,9*R*)-9-(2-bromophenyl)-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3m)

Yield (64%); 15:1 dr; white solid; m.p. 162-164 °C; $[\alpha]^{30}_{D} = 70.6$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.63 – 7.60 (m, 1H), 7.58 – 7.55 (m, 1H), 7.35 – 7.28 (m, 1H), 7.20 – 7.14 (m, 2H), 7.11 (d, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 7.2 Hz, 1H), 6.44 – 6.34 (m, 1H), 6.33 (s, 1H), 6.20 (s, 1H), 5.23 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.14 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.44 (d, *J* = 9.6 Hz, 1H), 3.65 (s, 3H), 3.61 (s, 3H), 1.47 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.2, 144.9, 138.1, 136.9, 134.7, 132.3, 130.6, 128.6, 127.8, 125.5, 125.2, 123.3, 122.0, 119.2, 118.8, 116.6, 107.2, 65.2, 56.0, 55.0, 51.8, 32.7, 26.0.

HRMS (ESI+) Calcd. For $C_{23}H_{24}^{78.9183}BrN_2O_2^+$ ([M+H]⁺): 439.1016, found: 439.1017; $C_{23}H_{24}^{80.9163}BrN_2O_2^+$ ([M+H]⁺): 441.0996, found: 441.1000. IR (thin film) v (cm⁻¹) 3334, 3071, 2926, 1729, 1633, 1456, 1246, 1134, 746. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.01 and 5.78 min.

Methyl (6*S*,7*S*,9*S*)-2,7-dimethyl-9-(thiophen-2-yl)-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*S*)-3n)

Yield (58%); 14:1 dr; white solid; m.p. 56-58 °C; $[\alpha]^{30}_{D} = 83.4$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.26 – 7.24 (m, 1H), 7.18 – 7.16 (m, 1H), 7.16 – 7.12 (m, 1H), 7.11 – 7.07 (m, 1H), 7.03 – 6.99 (m, 1H), 6.94 (d, *J* = 7.2 Hz, 1H), 6.51 (s, 1H), 6.38 (ddd, *J* = 17.2, 10.4, 7.2 Hz, 1H), 6.22 (s, 1H), 5.20 (dd, *J* = 17.2, 2.0 Hz, 1H), 5.11 (dd, *J* = 10.4, 2.0 Hz, 1H), 4.31 (d, *J* = 9.6 Hz, 1H), 3.64 (s, 3H), 3.59 (s, 3H), 1.45 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 150.1, 138.3, 137.0, 134.8, 126.2, 126.0, 124.5, 124.4, 124.0, 121.9, 119.4, 118.9, 116.4, 107.2, 64.8, 56.9, 52.5, 51.7, 32.7, 26.5. HRMS (ESI+) Calcd. For C₂₁H₂₃N₂O₂S⁺ ([M+H]⁺): 367.1475, found: 367.1472. IR (thin film) *v* (cm⁻¹) 3342, 3065, 2945, 1730, 1606, 1454, 1238, 1125, 750. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 6.65 and 7.80 min.

Methyl (6*R*,7*R*,9*R*)-2,7-dimethyl-9-(thiophen-2-yl)-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*R*,7*R*,9*R*)-3n)

Yield (60%); 14:1 dr; white solid; m.p. 56-58 °C; $[\alpha]^{30}_{D} = -86.1$ (*c* 0.50, CH₂Cl₂); HRMS (ESI+) Calcd. For C₂₁H₂₃N₂O₂S⁺ ([M+H]⁺): 367.1475, found: 367.1473. IR (thin film) *v* (cm⁻¹) 3340, 3061, 2945, 1730, 1606, 1452, 1238, 1125, 744. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 6.65 and 7.80 min.

Methyl (6*R*,7*S*,9*R*)-2,7-dimethyl-9-(thiophen-2-yl)-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*R*,7*S*,9*R*)-3n)

Yield (45%); 10:1 dr; white solid; m.p. 54-56 °C; $[\alpha]^{30}_{D} = -93.6$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.27 – 7.26 (m, 1H), 7.19 – 7.09 (m, 3H), 7.05 – 6.87 (m, 2H), 6.51 (s, 1H), 6.43 – 6.27 (m, 1H), 5.75 (s, 1H), 5.04 (dd, *J* = 17.2, 1.6 Hz, 1H), 4.92 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.14 (d, *J* = 8.8 Hz, 1H), 3.78 (s, 3H), 3.66 (s, 3H), 1.63 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.7, 150.07, 140.87, 137.1, 132.8, 126.8, 125.7, 124.9, 124.2, 124.1, 121.7, 121.2, 119.8, 114.3, 107.4, 64.8, 60.0, 52.6, 51.8, 32.8, 20.7. HRMS (ESI+) Calcd. For C₂₁H₂₃N₂O₂S⁺ ([M+H]⁺): 367.1475, found: 367.1472. IR (thin film) *v* (cm⁻¹) 3340, 3065, 2944, 1729, 1605, 1454, 1240, 1125, 750. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 280 nm); t_r = 6.01 and 17.97 min.

Methyl (6*S*,7*R*,9*S*)-2,7-dimethyl-9-(thiophen-2-yl)-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*R*,9*S*)-3n)

Yield (52%); 10:1 dr; white solid; m.p. 54-56 °C; $[\alpha]^{30}_{D} = 96.0$ (*c* 0.50, CH₂Cl₂); HRMS (ESI+) Calcd. For C₂₁H₂₃N₂O₂S⁺ ([M+H]⁺): 367.1475, found: 367.1473. IR (thin film) *v* (cm⁻¹) 3340, 3060, 2944, 1730, 1606, 1452, 1238, 1125, 741. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 280 nm); t_r = 6.01 and 17.97 min.

Methyl (6*S*,7*S*,9*S*)-2,7-dimethyl-(furan-2-yl)-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino[3,4,5-*cd*] indole-7-carboxylate ((6*S*,7*S*,9*S*)-30)

Yield (55%); 10:1 dr; white solid; m.p. 76-78 °C; $[\alpha]^{30}_{D} = 110.2$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.41 (m, 1H), 7.26 – 7.25 (m, 1H), 7.20 – 7.04 (m, 2H), 6.96 – 6.85 (m, 1H), 6.48 (s, 1H), 6.42 – 6.30 (m, 2H), 6.20 (ddd, *J* = 17.2, 10.0, 8.6 Hz, 1H), 5.56 (s, 1H), 5.29 (dd, *J* = 10.0, 2.0 Hz, 1H), 5.09 (dd, *J* = 17.2, 2.0 Hz, 1H), 4.09 (d, *J* = 8.4 Hz, 1H), 3.68 (s, 3H), 3.50 (s, 3H), 1.52 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.7, 156.3, 141.7, 137.5, 137.1, 133.0, 125.3, 125.2, 121.7, 120.0, 118.7, 118.4, 110.1, 107.8, 106.3, 66.0, 59.0, 51.8, 49.7, 32.8, 20.1. HRMS (ESI+) Calcd. For C₂₁H₂₃N₂O₃⁺ ([M+H]⁺): 351.1703, found: 351.1699. IR (thin film) *v* (cm⁻¹) 3342, 3117, 2925, 1736, 1585, 1455, 1373, 1247, 1148, 750. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 11.62 and 13.82 min.

Methyl (6*S*,7*S*,9*R*)-2,7-dimethyl-9-propyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino[3,4,5-*cd*] indole-7-carboxylate ((6*S*,7*S*,9*R*)-3p)

Yield (44%); 11:1 dr; white solid; m.p. 68-70 °C; $[\alpha]^{30}_{D} = 71.0$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.16 – 7.09 (m, 2H), 6.85 – 6.81 (m, 1H), 6.69 (s, 1H), 6.31 – 6.16 (m, 1H), 5.23 (s, 1H), 5.21 – 5.17 (m, 1H), 4.76 – 4.68 (m, 2H), 3.70 (s, 3H), 3.68 (s, 3H), 1.95 – 1.85 (m, 1H), 1.67 – 1.61 (m, 1H), 1.50 – 1.41 (m, 3H), 1.00 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.9, 136.8, 135.7, 134.3, 127.3, 122.5, 122.1, 121.6, 118.5, 117.3), 107.5, 66.6, 52.5, 51.5, 49.8, 37.6, 32.7, 21.5, 19.1, 14.2. HRMS (ESI+) Calcd. For C₂₀H₂₇N₂O₂⁺ ([M+H]⁺): 327.2067, found: 327.2064. IR (thin film) ν (cm⁻¹) 3345, 2926, 2867, 1735, 1673, 1495, 1231, 1146, 748. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.39 and 6.18 min.

(6*S*,7*S*,9*R*)-9-(4-chlorophenyl)-2-methyl-6-vinyl-2,4',5',6,8,9-hexahydro-2'*H*-spiro[azepino[3,4,5*cd*]indole-7,3'-furan]-2'-one ((6*S*,7*S*,9*R*)-3q)

Yield (62%); 10:1 dr; white solid; m.p. 134-136 °C; $[\alpha]^{30}_{D} = 63.2$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.23 – 7.17 (m, 2H), 6.93 – 6.87 (m, 1H), 6.76 (ddd, *J* = 17.2, 10.4, 4.4 Hz, 1H), 5.95 (s, 1H), 5.84 (s, 1H), 5.35 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.90 (dd, *J* = 17.2, 1.6 Hz, 1H), 4.30 – 4.20 (m, 1H), 4.12 – 4.02 (m, 1H), 3.86 – 3.78 (m, 1H), 3.64 (s, 3H), 2.37 – 2.19 (m, 1H), 1.95 – 1.88 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 178.8, 142.5, 137.6, 137.3, 132.9, 132.0, 129.7, 128.3, 127.4, 126.5, 122.4, 120.8, 119.2, 117.6, 108.4, 65.7, 65.3, 55.9, 52.8, 39.6, 32.7, 29.8. HRMS (ESI+) Calcd. For C₂₃H₂₂^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 393.1364, found: 393.1365; C₂₃H₂₂^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 395.1334, found: 395.1335. IR (thin film) ν (cm⁻¹) 3357, 2922, 2851, 1727, 1632, 1514, 1246, 1123, 811. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 9.19 and 11.26 min.

Methyl (6S,7S,9R)-9-(4-chlorophenyl)-7-ethyl-2-methyl-6-vinyl-6,7,8,9-tetrahydro-2H-azepino

[3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3r)

Yield (66%); 20:1 dr; white solid; m.p. 114-116 °C; $[α]^{30}D = 103.8$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 7.21 – 7.13 (m, 1H), 7.08 (d, J = 7.4 Hz, 1H), 7.01 (d, J = 7.2 Hz, 1H), 6.48 – 6.36 (m, 1H), 6.21 (s, 1H), 5.68 (s, 1H), 5.21 (dd, J = 17.2, 1.6 Hz, 1H), 5.02 (dd, J = 10.4, 1.6 Hz, 1H), 4.20 (d, J = 9.6 Hz, 1H), 3.60 (s, 3H), 3.55 (s, 3H), 2.01 – 1.90 (m, 1H), 1.75 – 1.68 (m, 1H), 0.95 (t, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.4, 145.1, 139.8, 136.9, 135.4, 133.0, 129.8, 128.5, 126.4, 124.1, 121.9, 119.6, 118.4, 114.9, 106.8, 67.7, 57.6, 56.1, 51.4, 33.8, 32.7, 8.6. HRMS (ESI+) Calcd. For C₂₄H₂₆^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 409.1677, found: 409.1672; C₂₄H₂₆^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 411.1647, found: 411.1657. IR (thin film) ν (cm⁻¹) 3339, 2943, 2878, 1729, 1632, 1487, 1224, 1137, 745. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.40 and 7.37 min.

Methyl (6*S*,7*S*,9*R*)-9-(4-chlorophenyl)-7-propyl-2-methyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3s)

Yield (63%); 20:1 dr; white solid; m.p. 138-140 °C; $[\alpha]^{30}_{D} = 107.8$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.49 – 7.43 (m, 2H), 7.37 – 7.29 (m, 2H), 7.18 – 7.13 (m, 1H), 7.10 – 7.06 (m, 1H), 6.99 (d, *J* = 6.8 Hz, 1H), 6.48 – 6.36 (m, 1H), 6.20 (s, 1H), 5.69 (s, 1H), 5.19 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.02 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.19 (d, *J* = 9.6 Hz, 1H), 3.60 (s, 3H), 3.53 (s, 3H), 1.91 (dd, *J* = 12.8, 4.8 Hz, 1H), 1.60 (dd, *J* = 25.2, 4.8 Hz, 1H), 1.52 – 1.40 (m, 1H), 1.31 – 1.24 (m, 1H), 0.89 (t, *J*

= 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.6, 145.1, 139.8, 136.9, 135.4, 133.0, 129.8, 128.5, 126.4, 124.1, 121.9, 119.6, 118.5, 115.0, 106.8, 67.3, 57.5, 56.7, 51.4, 43.2, 32.7, 17.4, 14.2. HRMS (ESI+) Calcd. For C₂₅H₂₈^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 423.1834, found: 423.1835; C₂₅H₂₈^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 425.1804, found: 425.1807. IR (thin film) v (cm⁻¹) 3340, 2944, 2877, 1729, 1593, 1455, 1241, 1082, 752. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 6.24 and 6.89 min.

Ethyl (6*S*,7*S*,9*R*)-7-allyl-9-(4-chlorophenyl)-2-methyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3t)

Yield (66%); 20:1 dr; white solid; m.p. 54-56 °C; $[α]^{30}_{D} = 74.6$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.44 (d, *J* = 8.4 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 7.17 – 7.10 (m, 1H), 7.06 (d, *J* = 7.2 Hz, 1H), 6.96 (d, *J* = 7.2 Hz, 1H), 6.48 – 6.38 (m, 1H), 6.21 (s, 1H), 5.78 (s, 1H), 5.85 – 5.70 (m, 1H), 5.20 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.16 – 5.12 (m, 2H), 5.05 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.17 (d, *J* = 9.6 Hz, 1H), 4.02 – 3.94 (m, 2H), 3.59 (s, 3H), 2.67 (dd, *J* = 13.6, 6.4 Hz, 1H), 2.43 (dd, *J* = 13.6, 8.4 Hz, 1H), 0.95 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 145.2, 139.6, 136.9, 135.2, 132.9, 132.4, 129.8 128.5, 126.4, 124.2, 121.8, 119.8, 119.4, 118.4, 115.6, 106.9, 66.5, 60.3, 57.2, 44.6, 32.7, 14.0. HRMS (ESI+) Calcd. For C₂₆H₂₈^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 435.1834, found: 435.1824; C₂₆H₂₈^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 437.1804, found: 437.1806. IR (thin film) *ν* (cm⁻¹) 3334, .2931, 2862, 1726, 1634, 1487, 1204, 1138, 748. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.99 and 8.53 min.

Ethyl (6R,7R,9S)-7-allyl-9-(4-chlorophenyl)-2-methyl-6-vinyl-6,7,8,9-tetrahydro-2H-azepino

[3,4,5-*cd*]indole-7-carboxylate ((6*R*,7*R*,9*S*)-3t)

Yield (60%); 19:1 dr; white solid; m.p. 54-56 °C; $[\alpha]^{30}_{D} = -72.4$ (*c* 0.50, CH₂Cl₂); HRMS (ESI+) Calcd. For C₂₆H₂₈^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 435.1834, found: 435.1829; C₂₆H₂₈^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 437.1804, found: 437.1811. IR (thin film) *v* (cm⁻¹) 3344, 2926, 2855, 1729, 1635, 1487, 1215, 1162, 748. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 230$ nm); t_r = 5.99 and 8.53 min.

Ethyl (6*R*,7*S*,9*S*)-7-allyl-9-(4-chlorophenyl)-2-methyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*R*,7*S*,9*S*)-3t)

Yield (60%); 20:1 dr; white solid; m.p. 140-142 °C; $[\alpha]^{30}_{D} = -79.2$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.22 – 7.11 (m, 2H), 6.97 (d, *J* = 6.0 Hz, 1H), 6.45 – 6.28 (m, 1H), 6.24 (s, 1H), 5.87 – 5.67 (m, 1H), 5.37 (s, 1H), 5.14 – 5.09 (m, 1H), 5.14 – 5.08 (m, 1H), 5.03 (dd, *J* = 17.2, 2.0 Hz, 1H), 4.92 (dd, *J* = 10.4, 2.0 Hz, 1H), 4.26 – 4.18 (m, 2H), 4.17 (d, *J* = 8.8 Hz, 1H), 3.63 (s, 3H), 3.10 (dd, *J* = 15.2, 6.4 Hz, 1H), 2.52 (dd, *J* = 15.2, 7.6 Hz, 1H), 1.33 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.7, 144.3, 140.8, 137.0, 133.5, 133.1, 132.8, 129.9, 128.5, 126.5, 124.6, 121.7, 121.0, 119.8, 118.2, 114.4, 107.5, 68.1, 61.6, 60.1, 55.8, 37.9, 32.7, 14.3. HRMS (ESI+) Calcd. For C₂₆H₂₈^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 435.1834, found: 435.1830; C₂₆H₂₈^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 437.1804, found: 437.1808. IR (thin film) ν (cm⁻¹) 3335, 2925, 2855, 1726, 1634, 1487, 1204, 1138, 748. The product was analyzed by HPLC to determine the

enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 6.55 and 8.68 min.

Ethyl (6*S*,7*R*,9*R*)-7-allyl-9-(4-chlorophenyl)-2-methyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*R*,9*R*)-3t)

Yield (62%); 20:1 dr; white solid; m.p. 140-142 °C; $[\alpha]^{30}_{D} = 79.6$ (*c* 0.50, CH₂Cl₂); HRMS (ESI+) Calcd. For C₂₆H₂₈^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 435.1834, found: 435.1832; C₂₆H₂₈^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 437.1804, found: 437.1807. IR (thin film) ν (cm⁻¹) 3348, 2976, 2872, 1728, 1635, 1469, 1215, 1159, 748. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 6.55 and 8.68 min.

Methyl (6*S*,7*R*,9*R*)-7-(*tert*-butoxymethyl)-9-(4-chlorophenyl)-2-methyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino[3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*R*,9*R*)-3u)

Yield (65%); 20:1 dr; white solid; m.p. 148-150 °C; $[\alpha]^{30}_{D} = 51.6$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.48 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.17 – 7.09 (m, 1H), 7.06 (d, *J* = 7.6 Hz, 1H), 6.97 (d, *J* = 7.2 Hz, 1H), 6.45 – 6.33 (m, 1H), 6.22 (s, 1H), 5.85 (s, 1H), 5.17 (dd, *J* = 17.2, 1.6 Hz, 1H), 4.99 (dd, *J* = 10.0, 2.0 Hz, 1H), 4.23 (d, *J* = 9.2 Hz, 1H), 3.59 (s, 1H), 3.51(s, 1H), 3.63 – 3.56 (m, 1H), 3.53 – 3.45 (m, 1H), 1.11 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.0, 145.5, 139.8, 136.9, 135.1, 132.8, 129.9, 128.4, 126.7, 124.1, 121.8, 119.5, 118.4, 115.0, 106.9, 73.2, 68.2, 67.6,

57.5, 55.6, 51.4, 32.7, 27.4. HRMS (ESI+) Calcd. For $C_{27}H_{32}^{34.9689}CIN_2O_3^+$ ([M+H]⁺): 467.2096, found: 467.2097; $C_{27}H_{32}^{36.9659}CIN_2O_3^+$ ([M+H]⁺): 469.2066, found: 469.2061. IR (thin film) v (cm⁻¹) 3334, 2973, 2873, 1743, 1604, 1487, 1196, 1090, 746. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.38 and 6.64 min.

Methyl (6*R*,7*S*,9*S*)-7-(*tert*-butoxymethyl)-9-(4-chlorophenyl)-2-methyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino[3,4,5-*cd*]indole-7-carboxylate ((6*R*,7*S*,9*S*)-3u)

Yield (61%); 20:1 dr; white solid; m.p. 148-150 °C; $[\alpha]^{30}_{D} = -55.0$ (*c* 0.50, CH₂Cl₂); HRMS (ESI+) Calcd. For C₂₇H₃₂^{34.9689}ClN₂O₃⁺ ([M+H]⁺): 467.2096, found: 467.2103; C₂₇H₃₂^{36.9659}ClN₂O₃⁺ ([M+H]⁺): 469.2066, found: 469.2067. IR (thin film) ν (cm⁻¹) 3333, 2973, 2875, 1743, 1630, 1488, 1197, 1091, 747. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.38 and 6.64 min.

Methyl (6*R*,7*R*,9*S*)-7-(*tert*-butoxymethyl)-9-(4-chlorophenyl)-2-methyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino[3,4,5-*cd*]indole-7-carboxylate ((6*R*,7*R*,9*S*)-3u)

Yield (60%); 20:1 dr; white solid; m.p. 178-180 °C; $[\alpha]^{30}_{D} = -81.6$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 7.19 – 7.05 (m, 2H), 6.93 (d, *J* = 6.4 Hz, 1H), 6.40 – 6.30 (m, 1H), 6.23 (s, 1H), 5.38 (s, 1H), 5.04 (dd, *J* = 17.2, 2.0 Hz, 1H), 4.90 (dd, *J* = 17.2, 1H), 4.90 (dd, J = 17.2

10.4, 2.0 Hz, 1H), 4.10 (d, J = 8.8 Hz, 1H), 4.03 (d, J = 9.2 Hz, 1H), 3.75 (s, 3H), 3.66 (d, J = 9.2 Hz, 1H), 3.62 (s, 3H), 1.10 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 174.5, 144.6, 140.8, 137.1, 132.9, 132.7, 130.1, 128., 126.5, 124.7, 121.6, 120.7, 120.2, 114.1, 107.4, 72.9, 69.6, 62.5, 57.2, 55.6, 52.3, 32.7, 27.5. HRMS (ESI+) Calcd. For C₂₇H₃₂^{34.9689}ClN₂O₃⁺ ([M+H]⁺): 467.2096, found: 467.2095; C₂₇H₃₂^{36.9659}ClN₂O₃⁺ ([M+H]⁺): 469.2066, found: 469.2076. IR (thin film) ν (cm⁻¹) 3341, 2975, 2879, 1739, 1631, 1473, 1221, 1092, 748. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 4.01 and 10.64 min.

Methyl (6*S*,7*S*,9*R*)-7-(*tert*-butoxymethyl)-9-(4-chlorophenyl)-2-methyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino[3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3u)

Yield (62%); 19:1 dr; white solid; m.p. 178-180 °C; $[\alpha]^{30}_{D} = 84.8$ (*c* 0.50, CH₂Cl₂); HRMS (ESI+) Calcd. For C₂₇H₃₂^{34.9689}ClN₂O₃⁺ ([M+H]⁺): 467.2096, found: 467.2092; C₂₇H₃₂^{36.9659}ClN₂O₃⁺ ([M+H]⁺): 469.2066, found: 469.2068. IR (thin film) ν (cm⁻¹) 3342, 2973, 2885, 1741, 1631, 1487, 1236, 1090, 747. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 4.01 and 10.64 min.

Methyl (6*S*,7*S*,9*R*)-9-(4-chlorophenyl)-7-(3-methoxy-3-oxopropyl)-2-methyl-6-vinyl-6,7,8,9tetrahydro-2*H*-azepino[3,4,5-*cd*|indole-7-carboxylate ((6*S*,7*S*,9*R*)-3v)

CO₂Me ∠CO₂Me

Yield (58%); 20:1 dr; yellow liquid; $[\alpha]^{30}{}_{D} = 72.0$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.47 - 7.41 (m, 2H), 7.37 - 7.30 (m, 2H), 7.17 - 7.12 (m, 1H), 7.09 (d, *J* = 7.2 Hz, 1H), 6.95 (d, *J* = 7.0 Hz, 1H), 6.46 - 6.31 (m, 1H), 6.19 (s, 1H), 5.78 (s, 1H), 5.20 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.09 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.26 (d, *J* = 8.4 Hz, 1H), 3.63 (s, 3H), 3.60 (s, 3H), 3.55 (s, 3H), 2.52 - 2.32 (m, 2H), 2.22 (ddd, *J* = 13.6, 10.4, 6.4 Hz, 1H), 2.03 (ddd, *J* = 10.4, 6.4, 4.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 173.9, 173.4, 134.4, 133.0, 129.7, 128.5, 126.1, 122.0, 119.3, 116.4, 107.2, 67.2, 56.8, 56.3, 51.7, 32.7, 29.1. HRMS (ESI+) Calcd. For C₂₆H₂₈^{34.9689}ClN₂O₄⁺ ([M+H]⁺): 467.1732, found: 467.1722; C₂₆H₂₈^{36.9659}ClN₂O₄⁺ ([M+H]⁺): 469.1702, found: 469.1709. IR (thin film) ν (cm⁻¹) 3357, 2924, 2852, 1736, 1591, 1453, 1202, 1086, 752. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, λ = 230 nm); t_r = 8.04 and 9.56 min.

Methyl (6*R*,7*R*,9*S*)-9-(4-chlorophenyl)-7-(3-methoxy-3-oxopropyl)-2-methyl-6-vinyl-6,7,8,9tetrahydro-2*H*-azepino[3,4,5-*cd*]indole-7-carboxylate ((6*R*,7*R*,9*S*)-3v)

Yield (52%); 19:1 dr; yellow liquid; $[\alpha]^{30}_{D} = -73.4$ (*c* 0.50, CH₂Cl₂); HRMS (ESI+) Calcd. For C₂₆H₂₈^{34.9689}ClN₂O₄⁺ ([M+H]⁺): 467.1732, found: 467.1735; C₂₆H₂₈^{36.9659}ClN₂O₄⁺ ([M+H]⁺): 469.1702, found: 469.1707. IR (thin film) *v* (cm⁻¹) 3356, 2924, 2852, 1735, 1592, 1488, 1201, 1085, 751. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, $\lambda = 230$ nm); t_r = 8.04 and 9.56 min.

Methyl (6*R*,7*S*,9*S*)-9-(4-chlorophenyl)-7-(3-methoxy-3-oxopropyl)-2-methyl-6-vinyl-6,7,8,9tetrahydro-2*H*-azepino[3,4,5-*cd*]indole-7-carboxylate ((6*R*,7*S*,9*S*)-3v)

Yield (54%); 20:1 dr; white solid; m.p. 68-70 °C; $[α]^{30}D = -225.4$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.4 Hz, 2H), 7.20 – 7.09 (m, 2H), 6.96 – 6.92 (m, 1H), 6.40 – 6.26 (m, 1H), 6.21 (s, 1H), 5.22 (s, 1H), 5.02 (dd, J = 17.2, 2.0 Hz, 1H), 4.93 (dd, J = 10.4, 2.0 Hz, 1H), 4.16 (d, J = 8.8 Hz, 1H), 3.77 (s, 3H), 3.63 (s, 3H), 3.60 (s, 3H), 2.62 – 2.52 (m, 1H), 2.50 – 2.39 (m, 1H), 2.23 – 2.07 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 173.2, 143.9, 140.6, 137.0, 133.2, 132.4, 129.8, 128.6, 126.6, 124.6, 121.9, 120.9, 119.7, 114.6, 107.6, 67.9, 60.1, 55.6, 52.7, 51.7, 32.7, 29.8, 28.6. HRMS (ESI+) Calcd. For C₂₆H₂₈^{34.9689}ClN₂O₄⁺ ([M+H]⁺): 467.1732, found: 467.1729; C₂₆H₂₈^{36.9659}ClN₂O₄⁺ ([M+H]⁺): 469.1702, found: 469.1702. IR (thin film) *v* (cm⁻¹) 3347, 2949, 2852, 1735, 1589, 1457, 1171, 1085, 754. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, λ = 230 nm); t_r = 8.53 and 10.34 min.

Methyl (6*S*,7*R*,9*R*)-9-(4-chlorophenyl)-7-(3-methoxy-3-oxopropyl)-2-methyl-6-vinyl-6,7,8,9tetrahydro-2*H*-azepino[3,4,5-*cd*|indole-7-carboxylate ((6*S*,7*R*,9*R*)-3v)

Yield (55%); 18:1 dr; white solid; m.p. 68-70 °C; $[\alpha]^{30}_{D} = 222.5$ (*c* 0.50, CH₂Cl₂); HRMS (ESI+) Calcd. For C₂₆H₂₈^{34.9689}ClN₂O₄⁺ ([M+H]⁺): 467.1732, found: 467.1742; C₂₆H₂₈^{36.9659}ClN₂O₄⁺ ([M+H]⁺): 469.1702, found: 469.1709. IR (thin film) ν (cm⁻¹) 3357, 2949, 2854, 1735, 1591, 1485, 1240, 1083, 753. The product was analyzed by HPLC to determine the enantiomeric excess: 97% ee (Chiralpak AD-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, λ = 230 nm); t_r = 8.53 and 10.34 min. Methyl (6*S*,7*S*,9*R*)-9-(4-chlorophenyl)-2-methyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino[3,4,5-*cd*] indole-7-carboxylate ((6*S*,7*S*,9*R*)-3w)

Yield (54%); 9:1 dr; white solid; m.p. 168-170 °C; $[\alpha]^{30}_{D} = 83.2$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.35 – 7.27 (m, 4H), 7.22 – 7.18 (m, 2H), 7.11 – 7.04 (m, 1H), 6.22 (s, 1H), 5.92 (ddd, *J* = 17.2, 10.4, 9.2 Hz, 1H), 5.25 (dd, *J* = 10.4, 1.6 Hz, 1H), 5.19 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.14 (s, 1H), 4.03 (t, *J* = 9.2 Hz, 1H), 3.95 (d, *J* = 9.6 Hz, 1H), 3.66 (s, 3H), 3.64 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 143.2, 138.5, 137.4, 133.1, 133.0, 129.3, 128.6, 126.5, 124.8, 121.5, 120.8, 120.5, 117.8, 107.9, 67.2, 61.9, 55.8 51.5, 32.8. HRMS (ESI+) Calcd. For C₂₂H₂₂^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 381.1364, found: 381.1360; C₂₂H₂₂^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 383.1334, found: 383.1333. IR (thin film) ν (cm⁻¹) 3306, 2946, 2854, 1739, 1601, 1451, 1164, 1090, 744. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 11.90 and 14.91 min.

Methyl (6*R*,7*R*,9*S*)-9-(4-chlorophenyl)-2-methyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*R*,7*R*,9*S*)-3w)

Yield (55%); 10:1 dr; white solid; m.p. 168-170 °C; $[\alpha]^{30}_{D} = -86.2$ (*c* 0.50, CH₂Cl₂); HRMS (ESI+) Calcd. For C₂₂H₂₂^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 381.1364, found: 381.1363; C₂₂H₂₂^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 383.1334, found: 383.1332. IR (thin film) *v* (cm⁻¹) 3306, 2945, 2854, 1740, 1601, 1451, 1164, 1092, 744. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 11.90 and 14.91 min.

Methyl (6*R*,7*S*,9*S*)-9-(4-chlorophenyl)-2-methyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino[3,4,5-*cd*] indole-7-carboxylate ((6*R*,7*S*,9*S*)-3w)

Yield (52%); 10:1 dr; white solid; m.p. 166-168 °C; $[\alpha]^{30}_{D} = 83.2$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.40 (m, 2H), 7.34 – 7.27 (m, 2H), 7.22 – 7.10 (m, 2H), 7.01 (d, *J* = 7.2 Hz, 1H), 6.29 (ddd, *J* = 17.2, 10.0, 8.8 Hz, 1H), 6.21 (s, 1H), 5.11 (dd, *J* = 17.2, 2.0 Hz, 1H), 5.07 (s, 1H), 5.02 (dd, *J* = 10.0, 2.0 Hz, 1H), 4.36 (d, *J* = 8.8 Hz, 1H), 4.22 (d, *J* = 1.8 Hz, 1H), 3.79 (s, 3H), 3.61 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 173.7, 143.6, 139.4, 137.5, 134.2, 133.2, 129.7, 128.5, 126.7, 124.4, 121.6, 120.5, 119.9, 115.2, 107.3, 65.3, 63.2, 54.5, 52.5, 32.7. HRMS (ESI+) Calcd. For C₂₂H₂₂^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 381.1364, found: 381.1364; C₂₂H₂₂^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 383.1334, found: 383.1333. IR (thin film) ν (cm⁻¹) 3305, 2945, 2854, 1740, 1601, 1452, 1164, 1091, 745. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.87 and 6.67 min.

Methyl (6*S*,7*R*,9*R*)-9-(4-chlorophenyl)-2-methyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*R*,9*R*)-3w)

Yield (56%); 10:1 dr; white solid; m.p. 166-168 °C; $[\alpha]^{30}_{D} = -86.2$ (*c* 0.50, CH₂Cl₂); HRMS (ESI+) Calcd. For C₂₂H₂₂^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 381.1364, found: 381.1362; C₂₂H₂₂^{36.9659}ClN₂O₂⁺

 $([M+H]^+)$: 383.1334, found: 383.1334. IR (thin film) v (cm⁻¹) 3305, 2946, 2854, 1739, 1602, 1452, 1164, 1092, 745. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 11.90 and 14.91 min.

Methyl (6*S*,7*S*,9*R*)-9-(4-chlorophenyl)-5-fluoro-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino[3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3x)

Yield (63%); 14:1 dr; white solid; m.p. 202-204 °C; $[\alpha]^{30}_{D} = 106.6$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃)δ 7.50 – 7.41 (m, 2H), 7.39 – 7.28 (m, 2H), 7.01 – 6.89 (m, 2H), 6.36 – 6.25 (m, 1H), 6.24 (s, 1H), 5.63 (s, 1H), 5.26 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.11 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.39 (d, *J* = 9.2 Hz, 1H), 3.57 (s, 3H), 3.55 (s, 3H), 1.50 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 154.81 (d, *J* = 234.0 Hz), 145.0, 137.4, 133.16 (d, *J* = 13.8 Hz), 129.9, 128.5, 128.0, 124.2, 120.41 (d, *J* = 16.2 Hz), 118.3, 116.5, 110.3, 110.0, 107.45 (d, *J* = 10.2 Hz), 63.5, 57.6, 51.8, 50.2, 32.8, 29.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -130.0 HRMS (ESI+) Calcd. For C₂₃H₂₃^{34.9689}ClFN₂O₂⁺ ([M+H]⁺): 413.1427, found: 413.1425; C₂₃H₂₃^{36.9659}ClFN₂O₂⁺ ([M+H]⁺): 415.1397, found: 415.1406. IR (thin film) *v* (cm⁻¹) 3329, 2920, 2849, 1720, 1583, 1484, 1250, 1132, 783. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 230$ nm); t_r = 6.00 and 8.00 min.

Methyl (6*S*,7*S*,9*R*)-9-(4-chlorophenyl)-6-fluoro-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino[3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3y)

Yield (60%); 9:1 dr; white solid; m.p. 122-124 °C; $[α]^{30}D = 99.8$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.40 (m, 2H), 7.38 – 7.31 (m, 2H), 6.88 (dd, *J* = 8.8, 2.0 Hz, 1H), 6.72 (dd, *J* = 10.4, 2.0 Hz, 1H), 6.35 (s, 1H), 6.34 – 6.24 (m, 1H), 5.68 (s, 1H), 5.21 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.15 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.28 (d, *J* = 9.6 Hz, 1H), 3.94 (s, 3H), 3.61 (s, 3H), 1.42 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.1, 160.29 (d, *J* = 240.0 Hz), 143.1, 137.3, 137.02 (d, *J* = 9.2 Hz), 133.2, 132.50 (d, *J* = 12.8 Hz), 129.4, 128.6, 120.39 (d, *J* = 3.6 Hz), 117.7, 117.4, 108.6, 108.3, 92.69 (d, *J* = 27.2 Hz), 65.6, 64.8, 56.5, 56.3, 51.9, 26.2. ¹⁹F NMR δ -119.5. HRMS (ESI+) Calcd. For C₂₃H₂₃^{34.9689}CIFN₂O₂⁺ ([M+H]⁺): 413.1427, found: 413.1417; C₂₃H₂₃^{36.9659}CIFN₂O₂⁺ ([M+H]⁺): 415.1397, found: 415.1399. IR (thin film) *v* (cm⁻¹) 3341, 2931, 2854, 1733, 1618, 1489, 1237, 1093, 770. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.93 and 8.56 min.

Methyl (6*S*,7*S*,9*R*)-9-(4-chlorophenyl)-7-fluoro-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino[3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3z)

Yield (54%); 11:1 dr; white solid; m.p. 104-106 °C; $[\alpha]^{30}_{D} = 91.8$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.39 (m, 2H), 7.37 – 7.31 (m, 2H), 6.81 – 6.77 (m, 1H), 6.77 – 6.75 (m, 1H), 6.36 – 6.25 (m, 1H), 6.08 (s, 1H), 5.77 (s, 1H), 5.17 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.12 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.32 (d, *J* = 9.6 Hz, 1H), 3.79 (s, 3H), 3.60 (s, 3H), 1.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.3, 149.0 (d, *J* = 242.4 Hz), 143.6, 137.9, 133.0, 130.4, 130.3, 129.4, 128.6, 127.6, 124.7 (d, *J* =

10.4 Hz), 121.0, 118.9 (d, J = 6.4 Hz), 116.8, 107.3 (d, J = 17.9 Hz), 65.0, 56.1, 55.8, 51.8, 35.5, 35.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -119.5. HRMS (ESI+) Calcd. For C₂₃H₂₃^{34.9689}ClFN₂O₂⁺ ([M+H]⁺): 413.1427, found: 413.1421; C₂₃H₂₃^{36.9659}ClFN₂O₂⁺ ([M+H]⁺): 415.1397, found: 415.1407. IR (thin film) v (cm⁻¹) 3357, 2949, 2854, 1735, 1591, 1485, 1240, 1083, 753. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.05 and 5.46 min.

Methyl (6*S*,7*S*,9*R*)-9-(4-chlorophenyl)-4-bromo-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*azepino[3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3A)

Yield (63%); 12:1 dr; white solid; m.p. 176-178 °C; $[α]^{30}D = 48.0$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.40 (m, 2H), 7.35 – 7.30 (m, 2H), 7.24 – 7.22 (m, 1H), 7.07 – 7.04 (m, 1H), 6.36 – 7.24 (m, 1H), 6.14 (s, 1H), 5.71 (s, 1H), 5.20 (dd, *J* = 17.2 Hz, 1.6 Hz, 1H), 5.12 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.21 (d, *J* = 9.6 Hz, 1H), 3.58 (s, 3H), 3.55 (s, 3H), 1.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.2, 143.9, 137.8, 137.7, 136.7, 133.1, 129.5, 128.6, 126.6, 123.6, 122.2, 119.9, 117.0, 115.5, 110.2, 64.5, 56.7, 56.2, 51.8, 32.7, 27.0. HRMS (ESI+) Calcd. For C₂₃H₂₃^{34.9689}Cl^{78.9183}BrN₂O₂⁺ ([M+H]⁺): 473.0626, found: 473.0630; C₂₃H₂₃^{36.9659}Cl^{78.9183}BrN₂O₂⁺ ([M+H]⁺): 475.0596, found: 475.0601; C₂₃H₂₃^{36.9659}Cl^{80.9163}BrN₂O₂⁺ ([M+H]⁺): 477.0576, found: 477.0570. IR (thin film) *ν* (cm⁻¹) 3354, 2921, 2851, 1731, 1632, 1487, 1239, 1039, 788. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 230$ nm); t_r = 6.21 and 7.40 min.

Methyl (6*S*,7*S*,9*R*)-9-(4-chlorophenyl)-2,7-dimethyl-4-phenyl-6-vinyl-6,7,8,9-tetrahydro-2*H*azepino[3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3B)

Yield (56%); 20:1 dr; white solid; m.p. 186-188 °C; $[\alpha]^{30}_{D} = 29.8$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.69 – 7.64 (m, 2H), 7.49 – 7.41 (m, 4H), 7.37 – 7.30 (m, 3H), 7.29 – 7.27 (m, 1H), 7.26 – 7.23 (m, 1H), 7.21 (s, 1H), 6.46 – 6.35 (m, 1H), 6.20 (s, 1H), 5.81 (s, 1H), 5.23 (dd, *J* = 17.2, 1.2 Hz, 1H), 5.12 (dd, *J* = 10.4, 1.2 Hz, 1H), 4.37 (d, *J* = 9.6 Hz, 1H), 3.64 (s, 3H), 3.60 (s, 3H), 1.48 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 144.2, 142.5, 138.4, 137.5, 135.6, 135.1, 132.9, 129.6, 128.6, 128.5, 127.4, 126.67, 126.5, 124.2, 119.7, 119.1, 116.6, 105.8, 64.8, 57.2, 56.6, 51.8, 32.78, 27.0. HRMS (ESI+) Calcd. For C₂₉H₂₈^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 471.1834, found: 471.1827; C₂₉H₂₈^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 473.1804, found: 473.1806. IR (thin film) ν (cm⁻¹) 3341, 2927, 2854, 1730, 1597, 1486, 1238, 1091, 763. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak ID, *i*-propanol /hexane = 5/95, flow rate 1.0 mL/min, λ = 230 nm); t_r = 7.93 and 10.55 min.

Methyl (6*S*,7*S*,9*R*)-9-(4-chlorophenyl)-2,7-dimethyl-4,6-divinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3C)

Yield (64%); 18:1 dr; white solid; m.p. 186-188 °C; $[\alpha]^{30}_{D} = 29.0$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.35 – 7.30 (m, 2H), 7.08 (d, *J* = 11.2 Hz, 2H), 6.81 (dd, *J* = 17.2, 10.8 Hz, 1H), 6.42 – 6.30 (m, 1H), 6.16 (s, 1H), 5.80 – 5.72 (m, 1H), 5.76 (s, 1H), 5.24 – 5.14 (m, 2H), 5.11 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.29 (d, *J* = 9.6 Hz, 1H), 3.59 (s, 3H), 3.58 (s, 3H), 1.44 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 144.2, 138.3, 137.9, 137.2, 134.8, 132.9, 131.9, 129.5, 128.5, 126.8,
124.8, 119.8, 117.6, 116.6, 111.7, 105.4, 64.7, 57.0, 56.4, 51.8, 32.7, 26.9. HRMS (ESI+) Calcd. For $C_{25}H_{26}{}^{34.9689}ClN_2O_2{}^+$ ([M+H]⁺): 421.1677, found: 421.1679; $C_{25}H_{26}{}^{36.9659}ClN_2O_2{}^+$ ([M+H]⁺): 423.1647, found: 423.1651. IR (thin film) v (cm⁻¹) 3330, 2974, 2925, 1722, 1625, 1485, 1249, 1133, 782. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IC, *i*-propanol /hexane = 5/95, flow rate 1.0 mL/min, λ = 280 nm); t_r = 8.07 and 10.42 min.

Methyl (6*S*,7*S*,9*R*)-9-(4-chlorophenyl)-4-cyclopropyl-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino[3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3D)

Yield (61%); 13:1 dr; white solid; m.p. 166-168 °C; $[\alpha]^{30}_{D} = 66.0$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.39 (m, 2H), 7.35 – 7.29 (m, 2H), 6.74 (d, *J* = 10.4 Hz, 2H), 6.04 – 6.28 (m, 1H), 6.07 (s, 1H), 5.74 (s, 1H), 5.23 – 5.16 (m, 1H), 5.13 – 5.07 (m, 1H), 4.27 (d, *J* = 9.6 Hz, 1H), 3.58 (s, 3H), 3.54 (s, 3H), 2.06 – 1.97 (m, 1H), 1.42 (s, 3H), 0.98 – 0.91 (m, 2H), 0.77 – 0.67 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 175.4, 144.2, 138.4, 138.0, 137.3, 134.4, 132.8, 129.5, 128.4, 125.4, 123.2, 119.7, 118.1, 116.4, 103.7, 64.8, 56.5, 51.7, 32.5, 26.7, 15.9, 9.1, 9.0. HRMS (ESI+) Calcd. For C₂₆H₂₈^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 435.1834, found: 435.1832; C₂₆H₂₈^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 437.1804, found: 437.1810. IR (thin film) ν (cm⁻¹) 3340, 2930, 2857, 1731, 1617, 1488, 1239, 1093, 779. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IC, *i*-propanol /hexane = 5/95, flow rate 1.0 mL/min, λ = 230 nm); t_r = 8.10 and 10.74 min.

Methyl (6*S*,7*S*,9*R*)-2-allyl-9-(4-chlorophenyl)-7-methyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3E)

Yield (63%); 10:1 dr; white solid; m.p. 118-120 °C; $[\alpha]^{30}_{D} = 67.2$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.40 (m, 2H), 7.36 – 7.29 (m, 2H), 7.18 – 7.07 (m, 2H), 6.93 (d, *J* = 6.4 Hz, 1H), 6.40 – 6.30 (m, 1H), 6.19 (s, 1H), 5.94 – 5.83 (m, 1H), 5.81 (s, 1H), 5.20 (dd, *J* = 17.2, 1.6 Hz, 1H), 5.14 (dd, *J* = 10.4, 1.6 Hz, 1H), 5.11 (dd, *J* = 10.4, 1.6 Hz, 1H), 5.03 (dd, *J* = 17.2, 1.6 Hz, 1H), 4.60 – 4.46 (m, 2H), 4.40 (d, *J* = 9.6 Hz, 1H), 3.59 (s, 3H), 1.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.4, 143.8, 138.0, 136.4, 134.8, 133.3, 132.9, 129.5, 128.5, 125.4, 124.8, 122.1, 120.8, 118.9, 117.3, 116.7, 107.6, 65.2, 56.2, 51.7, 48.8, 29.7, 25.9. HRMS (ESI+) Calcd. For C₂₅H₂₆^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 421.1677, found: 421.1673; C₂₅H₂₆^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 423.1647, found: 423.1659. IR (thin film) *v* (cm⁻¹) 3336, 2924, 2853, 1730, 1600, 1487, 1240, 1092, 747. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.13 and 6.60 min.

Methyl (6*S*,7*S*,9*R*)-2-benzyl-9-(4-chlorophenyl)-7-methyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3F)

Yield (61%); 15:1 dr; white solid; m.p. 88°C-90 °C; $[\alpha]^{30}_{D} = 70.8$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.40 (m, 2H), 7.35 – 7.30 (m, 2H), 7.25 – 7.20 (m, 3H), 7.12 – 7.05 (m, 2H), 7.04 – 7.00 (m, 2H), 6.93 (d, *J* = 6.8 Hz, 1H), 6.42 – 6.30 (m, 1H), 6.25 (s, 1H), 5.84 (s, 1H), 5.25 – 5.19 (m, 1H), 5.19 – 5.11 (m, 2H), 5.11 – 5.04 (m, 1H), 4.43 (d, *J* = 9.6 Hz, 1H), 3.60 (s, 3H), 1.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 175.4, 143.7, 137.8, 137.4, 136.7, 134.8, 132.9, 129.4, 128.5,

128.5, 127.5 126.6, 125.6, 125.2, 122.3, 121.2, 119.0, 116.8, 107.8, 65.3, 56.2, 51.7, 50.0, 29.4, 25.7. HRMS (ESI+) Calcd. For C₂₉H₂₈^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 471.1834, found: 471.1837; C₂₉H₂₈^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 473.1804, found: 473.1814. IR (thin film) v (cm⁻¹) 3339, 2928, 2869, 1731, 1600, 1488, 1240, 1091, 740. The product was analyzed by HPLC to determine the enantiomeric excess: 99% ee (Chiralpak IC, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 6.65 and 8.32 min.

Methyl (6*S*,7*S*,9*R*)-9-(4-chlorophenyl)-7-methyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*R*)-3G)

Yield (66%); 11:1 dr; white solid; m.p. 158-160 °C; $[\alpha]^{30}_{D} = 40.6$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 8.03 (s, 1H), 7.56 – 7.50 (m, 2H), 7.38 – 7.32 (m, 2H), 7.19 – 7.07 (m, 2H), 6.92 (d, *J* = 7.2 Hz, 1H), 6.33 (ddd, *J* = 17.2, 10.4, 7.6 Hz, 1H), 6.15 (s, 1H), 5.45 (s, 1H), 5.37 – 5.23 (m, 1H), 5.19 – 5.03 (m, 1H), 4.08 (d, *J* = 7.6 Hz, 1H), 3.77 – 3.72 (m, 1H), 3.37 (s, 3H), 1.53 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.8, 142.9, 137.7, 136.4, 133.5, 133.0, 129.8, 128.6, 125.2, 122.4, 121.6, 121.1, 120.3, 118.5, 109.5, 66.3, 57.9, 56.1, 51.8, 23.6. HRMS (ESI+) Calcd. For C₂₂H₂₂^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 381.1364, found: 381.1363; C₂₂H₂₂^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 383.1334, found: 383.1343. IR (thin film) ν (cm⁻¹) 3396, 2926, 2852, 1726, 1619, 1487, 1240, 1092, 749. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 11.90 and 14.91 min.

4. Scale-Up Experiment and Synthetic Transformation

Scheme S1 Scale-Up Experiment and Synthetic Transformation

A flame dried Schlenk tube **A** was cooled to room temperature and filled with N₂. To this flask were added [Ir(COD)Cl]₂ (0.05 mmol), (R,R,R)-L5 (0.10 mmol), degassed THF (4 mL) and degassed *n*-propylamine (1 mL). The reaction mixture was heated at 50 °C for 30 min and then the volatile solvents were removed under vacuum to gain a pale-yellow solid. Meanwhile, Cu(MeCN)₄BF₄ (0.10 mmol) and (S, S_p)-iPr-Phosferrox-L1 (0.11 mmol) were dissolved in 15.0 mL of DCE in a Schlenk tube **B**, and stirred at room temperature for about 40 min. Then, aldimine ester 1 (2.4 mmol), 4-indolyl allylic carbonate 2 (2.0 mmol) and K₂CO₃ (4.0 mmol) were added into the Schlenk tube **B** to the Schlenk

tube A *via* syringe. Finally, the reaction mixture was continuously stirred at room temperature under N₂ atmosphere. Once starting material was consumed (monitored by TLC), the residue was separated by flash column chromatography to give the crude product. The crude product was dissolved in dichloromethane and two equivalent of *para*-chlorobenzaldehyde and Zn(OTf)₂ (50 mol%) were added. Once starting material was consumed (monitored by TLC), the reaction was quenched with 1 mol of HCl solution (5 mL). The layers were separated, and the aqueous layer was extracted with DCM (5 mL x 3). The combined organic components were washed with saturated brine (10 mL), dried over anhydrous Na₂SO₄, filtration and evaporated in vacuum. After evaporation of the solvent under vacuum, the crude mixture was flushed with short silica gel plug to remove the metal complex and the diastereoselectivity was determined with ¹H NMR analysis. Then, the whole residue was further purified by column chromatography to give the desired product, which was then directly analyzed by HPLC to determine the enantiomeric excess.

Fresh prepared diazomethane solution (0.5 M in Et₂O, 2 mL) and (6R,7S,9S)-**3a** (78.8 mg, 0.2 mmol) were added into a Schlenk tube. Under a positive nitrogen pressure, the reaction was cooled to -20 °C, and Pd(OAc)₂ (1.5 mg, 1 mol %) was added in one portion with gas evolution. After stirring for 1 hour in -20 °C, the reaction was moved to room temperature and stirred overnight. While the reaction was partly completed, the solvent was removed under reduced pressure and the residue was purified by a flash column chromatography (PE/EA = 6/1) to afford the product (6R,7S,9S)-**4**.

Methyl (6R,7S,9S)-9-(4-chlorophenyl)-6-cyclopropyl-2,7-dimethyl-6,7,8,9-tetrahydro-2H-

azepino[3,4,5-*cd*]indole-7-carboxylate ((6*R*,7*S*,9*S*)-4): Yield (77%); >20:1 dr; white solid; m.p. 180-182 °C; $[\alpha]^{30}_{D} = -53.0$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.46 (m, 2H), 7.36

- 7.30 (m, 2H), 7.21 – 7.11 (m, 2H), 6.89 (dd, J = 5.6, 2.4 Hz, 1H), 6.22 (s, 1H), 5.31 (s, 1H), 3.78 (s, 3H), 3.63 (s, 3H), 2.74 (d, J = 9.6 Hz, 1H), 1.75 – 1.65 (m, 1H), 1.58 (s, 3H), 0.57 – 0.44 (m, 1H), 0.36 – 0.28 (m, 2H), 0.26 – 0.16 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 177.6, 144.6, 136.8, 135.0, 133.0, 130.0, 128.5, 126.4, 124.6, 121.4, 120.6, 119.9, 107.4, 64.1, 59.3, 56.2, 52.2, 32.7, 21.6, 15.9, 6.1, 3.8. HRMS (ESI+) Calcd. For C₂₄H₂₆^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 409.1677, found: 409.1667; C₂₄H₂₆^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 411.1647, found: 411.1653. IR (thin film) *v* (cm⁻¹) 3340, 2946, 2856, 1730, 1599, 1455, 1245, 1089, 748. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IE, *i*-propanol /hexane = 5/95, flow rate 1.0 mL/min, $\lambda = 230$ nm); t_r = 6.22 and 6.87 min.

To a solution of $[Ir(COD)Cl]_2$ (4.0 mg, 3 mol %) and bis(diphenylphosphino)methane (DPPM, 4.6 mg, 6 mol %) in anhydrous DCM (2 mL) was added (6*R*,7*S*,9*S*)-**3a** (78.8 g, 0.2 mmol) in one portion under a positive argon pressure. Then 4,4,5,5-tetramethyl-1,3,2-dioxaborolane (HBpin, 58 µL, 0.4 mmol) was added at room temperature and the resulting solution was stirred overnight. The reaction mixture was quenched with MeOH (1 mL) and concentrated under reduced pressure. The residue was purified by silica-gel flash column chromatography (PE/EA = 3/1, with 1% MeOH) to afford the product (6*R*,7*S*,9*S*)-**5**.

Methyl (6*R*,7*S*,9*S*)-9-(4-chlorophenyl)-2,7-dimethyl-6-(2-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)ethyl)-6,7,8,9-tetrahydro-2*H*-azepino[3,4,5-*cd*]indole-7-carboxylate ((6*R*,7*S*,9*S*)-5): Yield (89%); >20:1 dr; white solid; m.p. 114-116 °C; $[\alpha]^{30}_{D} = -52.0$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.52 – 7.47 (m, 2H), 7.34 – 7.30 (m, 2H), 7.16 – 7.07 (m, 2H), 6.96 – 6.90 (m, 1H), 6.18 (s, 1H), 5.28 (s, 1H), 3.80 (s, 3H), 3.61 (s, 3H), 3.36 (dd, *J* = 9.6, 3.2 Hz, 1H), 2.08 – 1.83 (m, 1H), 1.65 - 1.60 (m, 1H), 1.55 (s, 3H), 1.20 (d, J = 2.4 Hz, 12H), 0.71 – 0.62 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 177.9, 144.6, 137.1, 134.1, 132.9, 130.1, 128.4, 126.3, 124.6, 121.7, 120.9, 119.7, 107.3, 82.7, 64.6, 56.6, 56.3, 52.8, 32.6, 29.4, 28.3, 24.8, 21.7. HRMS (ESI+) Calcd. For C₂₉H₃₇B^{34.9689}ClN₂O₄⁺ ([M+H]⁺): 523.2529, found: 523.2534; C₂₉H₃₇B^{36.9659}ClN₂O₄⁺ ([M+H]⁺): 525.2499, found: 525.2502. IR (thin film) ν (cm⁻¹) 3373, 2978, 2935, 1728, 1583, 1454, 1374, 1244, 1146, 1091, 751. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.26 and 6.09 min.

Under nitrogen atmosphere, to a solution of (6R,7S,9S)-**3a** (78.8 mg, 0.2 mmol) in anhydrous THF (2 mL) was added NaBH₄ (1.0 mmol), the reaction was then moved into room temperature and continuously stirred until 3a complete consumption of starting material (detected by TLC). The reaction mixture was quenched with H₂O, extracted with EA (× 3) and filtered through celite to remove the colloid. The organic layer was combined, washed with brine, dried over Na₂SO₄ before evaporation. Then the residue was purified by a flash column chromatography (EA/PE=1:2) to afford the product (6*R*,7*S*,9*S*)-**6**.

Methyl (6R,7S,9S)-9-(4-chlorophenyl)-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2H-azepino

[3,4,5-*cd*]indol-7-yl)methanol ((6*R*,7*S*,9*S*)-6): Yield (75%); >20:1 dr; white solid; m.p. 82-84 °C; [α]³⁰_D = -54.2 (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.40 – 7.36 (m, 2H), 7.35 – 7.30 (m, 2H), 7.21 – 7.11 (m, 2H), 6.91 (dd, *J* = 6.0, 2.0 Hz, 1H), 6.26 (s, 1H), 6.17 (ddd, *J* = 17.2, 10.4, 8.4 Hz, 1H), 5.19 (s, 1H), 5.06 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.94 (dd, *J* = 17.2, 1.6 Hz, 1H), 3.67 (d, *J* = 8.4 Hz, 1H), 3.64 (s, 3H), 3.53 (d, *J* = 10.4 Hz, 1H), 3.37 (d, *J* = 10.4 Hz, 1H), 1.38 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 144.2, 139.3, 136.9, 134.2, 133.0, 129.7, 128.6, 126.5, 125.7, 121.9, 120.9, 120.1, 116.9, 107.3, 69.7, 59.3, 58.4, 56.7, 32.7, 19.7. HRMS (ESI+) Calcd. For $C_{22}H_{24}^{34.9689}ClN_2O^+$ ([M+H]⁺): 367.1572, found: 367.1568; $C_{22}H_{24}^{36.9659}ClN_2O^+$ ([M+H]⁺): 369.1542, found: 369.1550. IR (thin film) v (cm⁻¹) 3700, 3369, 2923, 2851, 1728, 1581, 1457, 1375, 1086, 751. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 20/80, flow rate 1.0 mL/min, λ = 230 nm); t_r = 5.30 and 6.35 min.

5. TFA-Promoted C9-Epimerization of 6,9-*cis*-3a to Access Another Four Stereoisomers 6,9-*trans*-3a

Scheme S2. TFA-Promoted C9-Epimerization of 6,9-cis-3a to Access Another Four Stereoisomers 6,9-trans-3a

General Reaction Procedure A for (6S,7S,9R)-**3a** and (6R,7R,9S)-**3a**: Under air atmosphere, to a solution of (6S,7S,9R)-**3a** or (6R,7R,9S)-**3a** (78.8 mg, 0.2 mmol) in DCM (2 mL) was added TFA (0.4 mmol), the reaction was continuously stirred until complete consumption of starting material (detected by TLC). The reaction mixture was quenched with NaHCO₃ (aq), extracted with DCM (× 3). The

organic layer was combined, washed with brine, dried over Na₂SO₄ before evaporation. Then the residue was purified by a column chromatography to afford the product (6S,7S,9S)-**3a** or (6R,7R,9R)-**3a**.

General Reaction Procedure B for (6R,7S,9S)-**3a** and (6S,7R,9R)-**3a**: under air atmosphere, to a solution of (6R,7S,9S)-**3a** or (6S,7R,9R)-**3a** (78.8 mg, 0.2 mmol) in DCM (2 mL) was added TFA (1.0 mmol), the reaction was continuously stirred until complete consumption of starting material (detected by TLC). The reaction mixture was quenched with NaHCO₃(aq), extracted with DCM (× 3). The organic layer was combined, washed with brine, dried over Na₂SO₄ before evaporation. Then the residue was purified by a column chromatography to afford the product (6R,7S,9R)-**3a** or (6S,7R,9S)-**3a** with the starting material being recovered.

Methyl (6*S*,7*S*,9*S*)-9-(4-chlorophenyl)-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*S*,9*S*)-3a)

Following **General Reaction Procedure A:** Yield (95%); >20:1 dr; white solid; m.p. 138-140 °C; $[\alpha]^{30}_{D} = 62.2 (c \ 0.50, CH_2Cl_2); {}^{1}H NMR (400 MHz, CDCl_3) \delta 7.54 (d, <math>J = 8.4 \text{ Hz}, 2H$), 7.36 (d, J = 8.4 Hz, 2H), 7.18 – 7.08 (m, 2H), 6.95 – 6.89 (m, 1H), 6.32 (ddd, J = 17.2, 10.4, 7.8 Hz, 1H), 6.04 (s, 1H), 5.45 (s, 1H), 5.29 (dd, J = 17.2, 1.6, 1H), 5.09 (dd, J = 10.4, 1.6, 1H), 4.08 (d, J = 7.6 Hz, 1H), 3.61 (s, 3H), 3.37 (s, 3H), 1.53 (s, 3H). ${}^{13}C$ NMR (101 MHz, CDCl_3) δ 176.8, 143.1, 137.7, 137.2, 133.6, 133.0, 129.8, 128.7, 125.9, 125.5, 121.9, 120.1, 119.8, 118.5, 107.6, 66.3, 57.9, 56.1, 51.7, 32.7, 23.4. HRMS (ESI+) Calcd. For C₂₃H₂₄^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 395.1521, found: 395.1511; C₂₃H₂₄^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 397.1491, found: 397.1497. IR (thin film) ν (cm⁻¹) 3337, 3049, 2947, 1730, 1597, 1487, 1246, 1088, 748. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IE, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); t_r = 6.62 and 7.30 min.

Methyl (6*R*,7*R*,9*R*)-9-(4-chlorophenyl)-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*R*,7*R*,9*R*)-3a)

Following General Reaction Procedure A: Yield (91%); >20:1 dr; white solid; m.p. 138-140 °C; $[\alpha]^{30}_{D} = -60.7 \ (c \ 0.50, \ CH_2Cl_2); \ HRMS \ (ESI+) \ Calcd. For \ C_{23}H_{24}^{34.9689} ClN_2O_2^+ \ ([M+H]^+): 395.1521, found: 395.1520; \ C_{23}H_{24}^{36.9659} ClN_2O_2^+ \ ([M+H]^+): 397.1491, found: 397.1497. IR \ (thin film) \ v \ (cm^{-1})$ 3333, 3068, 2929, 1728, 1577, 1486, 1245, 1090, 745. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak IE, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 230 \text{ nm}$); t_r = 6.62 and 7.30 min.

Methyl (6*R*,7*S*,9*R*)-9-(4-chlorophenyl)-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*R*,7*S*,9*R*)-3a)

Following **General Reaction Procedure B:** Yield (93% BRSM); >20:1 dr; white solid; m.p. 130-132 °C; $[\alpha]^{30}_{D} = -96.8$ (*c* 0.50, CH₂Cl₂); ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.4 Hz, 2H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.22 – 7.15 (m, 2H), 6.98-6.92 (m, 1H), 6.26 (ddd, *J* = 17.2, 10.4, 7.2 Hz, 1H), 6.06 (s, 1H), 5.65 (s, 1H), 5.04 (dd, *J* = 10.4, 1.6 Hz, 1H), 4.83 (dd, *J* = 17.2, 1.6 Hz, 1H), 3.99 (d, *J* = 7.2 Hz, 1H), 3.75 (s, 3H), 3.63 (s, 3H), 1.43 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 176.4, 142.6, 140.0, 137.3, 132.7, 132.2, 129.2, 128.5, 126.3, 125.6, 122.4, 121.6, 120.6, 116.8, 108.3, 67.6, 58.4,

55.5, 52.2 32.7, 28.4. HRMS (ESI+) Calcd. For $C_{23}H_{24}^{34.9689}CIN_2O_2^+$ ([M+H]⁺): 395.1521, found: 395.1518; $C_{23}H_{24}^{36.9659}CIN_2O_2^+$ ([M+H]⁺): 397.1491, found: 397.1495. IR (thin film) ν (cm⁻¹) 3343, 3047, 2929, 1727, 1576, 1486, 1246, 1089, 745. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, λ = 230 nm); tr = 7.91 and 8.90 min.

Methyl (6*S*,7*R*,9*S*)-9-(4-chlorophenyl)-2,7-dimethyl-6-vinyl-6,7,8,9-tetrahydro-2*H*-azepino [3,4,5-*cd*]indole-7-carboxylate ((6*S*,7*R*,9*S*)-3a)

Following General Reaction Procedure B: Yield (95% BRSM); >20:1 dr; white solid; m.p. 130-132 °C; $[\alpha]^{30}_{D} = 93.0$ (*c* 0.50, CH₂Cl₂); HRMS (ESI+) Calcd. For C₂₃H₂₄^{34.9689}ClN₂O₂⁺ ([M+H]⁺): 395.1521, found: 395.1517; C₂₃H₂₄^{36.9659}ClN₂O₂⁺ ([M+H]⁺): 397.1491, found: 397.1494. IR (thin film) v (cm⁻¹) 3340, 3063, 2944, 1729, 1593, 1483, 1241, 1082, 751. The product was analyzed by HPLC to determine the enantiomeric excess: >99% ee (Chiralpak AD-H, *i*-propanol /hexane = 10/90, flow rate 1.0 mL/min, $\lambda = 230$ nm); t_r = 6.62 and 7.30 min.

6. One-pot allylation/cyclization/epimerization with TFA as the cyclization promoter

A flame dried Schlenk tube A was cooled to room temperature and filled with N₂. To this flask were added [Ir(COD)Cl]₂ (0.005 mmol), (S,S,S)-L5 (0.010 mmol), degassed THF (0.5 mL) and degassed *n*-propylamine (0.5 mL). The reaction mixture was heated at 50 °C for 30 min and then the volatile solvents were removed under vacuum to gain a pale-yellow solid. Meanwhile, Cu(MeCN)₄BF₄ (0.01 mmol) and (*S*,*S*_{*p*})-^{*i*}Pr-Phosferrox-L1 (0.011 mmol) were dissolved in 1.0 mL of DCE in a Schlenk tube **B**, and stirred at room temperature for about 40 min. Then, aldimine ester 1a (0.30 mmol), 4-indolyl allylic carbonate 2a (0.20 mmol) and K₂CO₃ (0.40 mmol) were added into the Schlenk tube A and filled with N₂. The Cu/L1 complex solution was then transferred from the Schlenk tube **B** to the Schlenk tube **A** via syringe. Finally, the reaction mixture was continuously stirred at room temperature under N2 atmosphere. Once 4-indolyl allylic carbonate was consumed (monitored by TLC), two equivalents of the p-ClC₆H₄CHO and TFA (200 mol%) were added. When the generated allylation intermediate in first step was consumed (monitored by TLC), the reaction was quenched with saturated NaHCO₃ solution. The layers were separated, and the aqueous layer was extracted with DCM (5 mL x 3). The combined organic components were washed with saturated brine (5 mL), dried over anhydrous Na₂SO₄, filtration and evaporated in vacuum. After evaporation of the solvent under vacuum, the crude mixture was flushed with short silica gel plug to remove the metal complex and the diastereoselectivity was determined with ¹H NMR analysis. Then, the whole residue was further purified by column chromatography to give the desired product, which was then directly analyzed by HPLC to determine the enantiomeric excess.

7. References

1. C.-J. Wang, G. Liang, Z.-Y. Xue, F. Gao, J. Am. Chem. Soc. 2008, 130, 17250-17251.

(a) M. A. Blanchette, W. Choy, J. T. Davis, A. P. Essenfeld, S. Masamune, W. R. Roush, T. Sakai, *Tetrahedron Lett.* 1984, 25, 2183-2186. (b) J.-Q. Li, B. Peters, P. G. Andersson, *Chem. - Eur. J.* 2011, 17, 11143-11145. (c) D. J. Weix, D. Marković, M. Ueda, J. F. Hartwig, *Org. Lett.* 2009, 11, 2944-2947.

3. C. J. Richards, A. W. Mulvaney, Tetrahedron: Asymmetry 1996, 7, 1419-1430.

4. W.-B. Liu, C. Zheng, C.-X. Zhuo, L.-X. Dai, S.-L. You, J. Am. Chem. Soc. 2012, 134, 4812-4821.

5. C. R. Smith, D. J. Mans, T. V. Rajanbabu, Org. Synth. 2012, 85, 238-247.

6. M. d'Augustin, L. Palais, A. Alexakis, Angew. Chem. Int. Ed. 2005, 44, 1376-1378.

(a) C. Tresse, C. Guissart, S. Schweizer, Y. Bouhoute, A.-C. Chany, M.-L. Goddard, N. Blanchard, G. Evano, *Adv. Synth. Catal.* 2014, **356**, 2051-2060. (b) B. Bartels, C. García-Yebra, F. Rominger, G. Helmchen, *Eur. J. Inorg. Chem.* 2002, **2002**, 2569-2586.

8. X-ray Structures of (6S,7S,9R)-3a, (6R,7R,9R)-3a, and (6R,7S,9R)-3a

Figure S1. X-ray structure of (6S,7S,9R)-3a

Crystal data for (6*S*,7*S*,9*R*)-**3a**: C₂₃H₂₃ClN₂O₂, M_r = 394.88, T = 296 K, monoclinic, space group $P12_11$, a = 9.606(10), b = 7.933(10), c = 13.748(10) Å, β = 101.1060(10) °, V = 1028.1(19) Å³, Z = 2, 8054 unique reflections, final R_1 = 0.0431 and wR_2 = 0.1141 for 8320 observed [I>2 σ (I)] reflections, Flack χ = -0.012(8). CCDC 2090369 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Figure S2. X-ray structure of (6R,7R,9R)-3a

Crystal data for (6R,7R,9R)-**3a**: C₂₃H₂₃ClN₂O₂, $M_r = 394.88$, T = 296 K, orthorhombic, space group $P2_12_12_1$, a = 9.119(5), b = 17.378(10), c = 50.209(3) Å, V = 7956.7(8) Å³, Z = 16, 3930 unique reflections, final $R_1 = 0.0342$ and $wR_2 = 0.0902$ for 4034 observed [$I > 2\sigma(I)$] reflections, Flack $\chi = 0.013(3)$. CCDC 2090370 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

Figure S3. X-ray structure of (6R,7S,9R)-3a

Crystal data for (6R,7S,9R)-**3a**: C₂₃H₂₃ClN₂O₂, $M_r = 394.88$, T = 296 K, orthorhombic, space group $P2_12_12_1$, a = 9.299(10), b = 18.085(2), c = 24.744(2) Å, V = 4161.3(7) Å³, Z = 4, 8054 unique reflections, final $R_1 = 0.0431$ and $wR_2 = 0.1141$ for 8320 observed [$I > 2\sigma(I)$] reflections, Flack $\chi =$ -0.004(6). CCDC 2090371 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or <u>deposit@ccdc.cam.ac.uk</u>).

 $^{19}\mathrm{F}$ NMR (376 MHz) of 2x in CDCl₃

 ^{19}F NMR (376 MHz) of 2z in CDCl₃

S63

^{20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22} f1 (ppm)

¹H NMR (400 MHz) of (6*S*,7*S*,9*R*)-**3w** in CDCl₃

¹⁹F NMR (376 MHz) of (6*S*,7*S*,9*R*)-**3**x in CDCl₃

^{20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22} f1 (ppm)

¹⁹F NMR (376 MHz) of (6*S*,7*S*,9*R*)-**3z** in CDCl₃

HPLC chromatogram of compound (rac)-3a [(6S,7S,9R)-3a + (6R,7R,9S)-3a]

HPLC chromatogram of compound (6S,7S,9R)-3a

2980.98779 263.30911

HPLC chromatogram of compound (6R,7R,9S)-3a

HPLC chromatogram of compound (rac)-3a [(6R,7S,9S)-3a + (6S,7R,9R)-3a]

HPLC chromatogram of compound (6R, 7S, 9S)-3a

HPLC chromatogram of compound (6S,7R,9R)-3a

HPLC chromatogram of compound (rac)-3a [(6S,7S,9S)-3a + (6R,7R,9R)-3a]

HPLC chromatogram of compound (6S,7S,9S)-3a

HPLC chromatogram of compound (6R,7R,9R)-3a

HPLC chromatogram of compound (rac)-3a [(6R,7S,9R)-3a + (6S,7R,9S)-3a]

HPLC chromatogram of compound (6R,7S,9R)-3a

HPLC chromatogram of compound (6S,7R,9S)-3a

HPLC chromatogram of compound (*rac*)-3b [(6*S*,7*S*,9*R*)-3b + (6*R*,7*R*,9*S*)-3b]

HPLC chromatogram of compound (6S,7S,9R)-3b

HPLC chromatogram of compound (rac)-3c [(6S,7S,9R)-3c + (6R,7R,9S)-3c]

HPLC chromatogram of compound (6S,7S,9R)-3c

HPLC chromatogram of compound (rac)-3d [(6S,7S,9R)-3d + (6R,7R,9S)-3d]

HPLC chromatogram of compound (6S,7S,9R)-3d

HPLC chromatogram of compound (rac)-3e [(6S,7S,9R)-3e + (6R,7R,9S)-3e]

HPLC chromatogram of compound (6S,7S,9R)-3e

HPLC chromatogram of compound (rac)-3f [(6S,7S,9R)-3f + (6R,7R,9S)-3f]

HPLC chromatogram of compound (6S,7S,9R)-3f

HPLC chromatogram of compound (rac)-3g [(6S,7S,9R)-3g + (6R,7R,9S)-3g]

HPLC chromatogram of compound (6S,7S,9R)-3g

HPLC chromatogram of compound (rac)-3h [(6S,7S,9R)-3h + (6R,7R,9S)-3h]

HPLC chromatogram of compound (6S,7S,9R)-3h

HPLC chromatogram of compound (rac)-3i [(6S,7S,9R)-3i + (6R,7R,9S)-3i]

HPLC chromatogram of compound (6S,7S,9R)-3i

HPLC chromatogram of compound (rac)-3j [(6S,7S,9R)-3j + (6R,7R,9S)-3j]

HPLC chromatogram of compound (6S,7S,9R)-3j

HPLC chromatogram of compound (*rac*)-3k [(6*S*,7*S*,9*R*)-3k + (6*R*,7*R*,9*S*)-3k]

HPLC chromatogram of compound (6S,7S,9R)-3k

HPLC chromatogram of compound (rac)-31 [(6S,7S,9R)-31 + (6R,7R,9S)-31]

HPLC chromatogram of compound (6S,7S,9R)-31

HPLC chromatogram of compound (*rac*)-3m [(6*S*,7*S*,9*R*)-3m + (6*R*,7*R*,9*S*)-3m]

HPLC chromatogram of compound (6S,7S,9R)-3m

HPLC chromatogram of compound (rac)-3n [(6S,7S,9S)-3n + (6R,7R,9R)-3n]

HPLC chromatogram of compound (6S,7S,9S)-3n

HPLC chromatogram of compound (6R,7R,9R)-3n

HPLC chromatogram of compound (*rac*)-3n [(6*R*,7*S*,9*R*)-3n + (6*S*,7*R*,9*S*)-3n]

HPLC chromatogram of compound (6R,7S,9R)-3n

HPLC chromatogram of compound (6S,7R,9S)-3n

HPLC chromatogram of compound (rac)-30 [(6S,7S,9S)-30 + (6R,7R,9R)-30]

HPLC chromatogram of compound (6S,7S,9S)-30

HPLC chromatogram of compound (*rac*)-3p [(6*S*,7*S*,9*R*)-3p + (6*R*,7*R*,9*S*)-3p]

HPLC chromatogram of compound (6S,7S,9R)-3p

HPLC chromatogram of compound (rac)-3q [(6S,7S,9R)-3q + (6R,7R,9S)-3q]

HPLC chromatogram of compound (6S,7S,9R)-3q

HPLC chromatogram of compound (rac)-3r [(6S,7S,9R)-3r + (6R,7R,9S)-3r]

HPLC chromatogram of compound (6S,7S,9R)-3r

HPLC chromatogram of compound (rac)-3s [(6S,7S,9R)-3s +(6R,7R,9S)-3s]

HPLC chromatogram of compound (6S,7S,9R)-3s

HPLC chromatogram of compound (rac)-3t [(6S,7S,9R)-3t + (6R,7R,9S)-3t]

HPLC chromatogram of compound (6S,7S,9R)-3t

HPLC chromatogram of compound (6R,7R,9S)-3t

HPLC chromatogram of compound (rac)-3t [(6R,7S,9S)-3t + (6S,7R,9R)-3t]

HPLC chromatogram of compound (6R,7S,9S)-3t

HPLC chromatogram of compound (6S,7R,9R)-3t

HPLC chromatogram of compound (rac)-3u [(6S,7R,9R)-3u + (6R,7S,9S)-3u]

HPLC chromatogram of compound (6S,7R,9R)-3u

HPLC chromatogram of compound (6R,7S,9S)-3u

HPLC chromatogram of compound (*rac*)-3u [(6*R*,7*R*,9*S*)-3u + (6*S*,7*S*,9*R*)-3u]

HPLC chromatogram of compound (6R,7R,9S)-3u

HPLC chromatogram of compound (6S,7S,9R)-3u

HPLC chromatogram of compound (*rac*)-3v [(6S,7S,9R)-3v + (6S,7S,9R)-3v]

HPLC chromatogram of compound (6S,7S,9R)-3v

HPLC chromatogram of compound (6R,7R,9S)-3v

HPLC chromatogram of compound (rac)-3v [(6R,7S,9S)-3v + (6S,7R,9R)-3v]

HPLC chromatogram of compound (6R,7S,9S)-3v

HPLC chromatogram of compound (6S,7R,9R)-3v

HPLC chromatogram of compound (*rac*)-3w [(6*S*,7*S*,9*R*)-3w + (6*R*,7*R*,9*S*)-3w]

S182

HPLC chromatogram of compound (6S,7S,9R)-3w

HPLC chromatogram of compound (6R,7R,9S)-3w

HPLC chromatogram of compound (*rac*)-3w [(6*R*,7*S*,9*S*)-3w + (6*S*,7*R*,9*R*)-3w]

HPLC chromatogram of compound (6R,7S,9S)-3w

HPLC chromatogram of compound (6S,7R,9R)-3w

HPLC chromatogram of compound (rac)-3x [(6S,7S,9R)-3x + (6R,7R,9S)-3x]

HPLC chromatogram of compound (6S,7S,9R)-3x

HPLC chromatogram of compound (rac)-3y [(6S,7S,9R)-3y + (6R,7R,9S)-3y]

HPLC chromatogram of compound (6S,7S,9R)-3y

HPLC chromatogram of compound (rac)-3z [(6S,7S,9R)-3z + (6R,7R,9S)-3z]

HPLC chromatogram of compound (6S,7S,9R)-3z

HPLC chromatogram of compound (rac)-3A [(6S,7S,9R)-3A + (6R,7R,9S)-3A]

HPLC chromatogram of compound (6S,7S,9R)-3A

Totals: 5845.20459 355.07141

HPLC chromatogram of compound (*rac*)-3B [(6*S*,7*S*,9*R*)-3B + (6*R*,7*R*,9*S*)-3B]

HPLC chromatogram of compound (6S,7S,9R)-3B

HPLC chromatogram of compound (*rac*)-3C [(6*S*,7*S*,9*R*)-3C + (6*R*,7*R*,9*S*)-3C]

HPLC chromatogram of compound (6S,7S,9R)-3C

HPLC chromatogram of compound (*rac*)-3D [(6*S*,7*S*,9*R*)-3D + (6*R*,7*R*,9*S*)-3D]

HPLC chromatogram of compound (6S,7S,9R)-3D

HPLC chromatogram of compound (*rac*)-3E [(6S,7S,9R)-3E + (6R,7R,9S)-3E]

HPLC chromatogram of compound (6S,7S,9R)-3E

HPLC chromatogram of compound (*rac*)-3F [(6*S*,7*S*,9*R*)-3F + (6*R*,7*R*,9*S*)-3F]

HPLC chromatogram of compound (6S,7S,9R)-3F

HPLC chromatogram of compound (*rac*)-3G [(6*S*,7*S*,9*R*)-3G + (6*R*,7*R*,9*S*)-3G]

HPLC chromatogram of compound (6S,7S,9R)-3G

HPLC chromatogram of compound (rac)-4 [(6R,7S,9S)-4 + (6S,7R,9R)-4]

HPLC chromatogram of compound (6R,7S,9S)-4

HPLC chromatogram of compound (rac)-5 [(6R,7S,9S)-5 + (6S,7R,9R)-5]

HPLC chromatogram of compound (6R,7S,9S)-5

HPLC chromatogram of compound (rac)-6 [(6R,7S,9S)-6 + (6S,7R,9R)-6]

HPLC chromatogram of compound (6R,7S,9S)-6

