Electronic Supplementary Information

Rapid, amplification-free and high-throughput SARS-CoV-2 RNA detection via reduced-graphene-oxide based fluorescence assay

Min Wang¹, Yujin Chu¹, Yingkuan Han¹, Le Qiang¹, Yu Zhang¹*, Lin Han¹*

¹Institute of Marine Science and Technology, Shandong University, Qingdao 266237,

China;

* Correspondence: hanlin@sdu.edu.cn (L.H); yuzhang@sdu.edu.cn (Y.Z)

Name	Description	Sequence (5'-3')			
Probe R	DNA in RdRP gene	GTGAAATGGTCATGTGTGGCGGTTCACTATATGTT			
		AAACCAGGTGGAAC-Cy3			
Target	Complementary RNA	GUUCCACCUGGUUUAACAUAUAGUGAACCGCCAC			
		ACAUGACCAUUUCAC			
M 1-1	One base-pair mismatch	AUUCCACCUGGUUUAACAUAUAGUGAACCGCCAC			
		ACAUGACCAUUUCAC			
M 1-2	One base-pair mismatch	GUUCCACCUGGUUUAACAUAUAGUGAACCGCCAC			
		ACAUGACCAUUUCAA			
M 1-3	One base-pair mismatch	GUUCCACCUGGUUUAACAUAUAGUAAACCGCCAC			
		ACAUGACCAUUUCAC			
M 2-1	Two base-pair mismatches	AUUCCACCUGGUUUAACAUAUAGUGAACCGCCAC			
		ACAUGACCAUUUCAA			
M 2-2	Two base-pair mismatches	GUUCCACCUGGUUUAACAUAUAGUAUACCGCCAC			
		ACAUGACCAUUUCAC			
M 2-3	Two base-pair mismatches	GUUCCACCUGGUUUAACAUAUUGUGAACCACCAC			
		ACAUGACCAUUUCAC			
Mis-RNA	Non-complementary RNA	AAGAAUACCACGAAAGCAAGAAAAAGAAGUACG			
		CUAUUAACUAUUAACGUACCUGU			
Probe E1	DNA in E gene	ACAGGTACGTTAATAGTTAATAGCGTACTTCTTTT			
		CTTGCTTTCGTGGTATTCTT-Cy3			
Probe E2	DNA in E gene	GCTAGTTACACTAGCCATCCTTACTGCGCTTCGATT			
		GTGTGCGTACTGCTGCAATA-Cy3			

Table S1. Sequences of oligonucleotides.

Note: Probe R was used in detections of above-mentioned short RNAs. Probe E1 and Probe E2 were only used in detection of SARS-CoV-2-pseudovirus long RNA, which contains ORF1ab consequence, N gene and E gene.

ORF1 a/b consequence:

ATCGTGTTGTCTGTACTGCCGTTGCCACATAGATCATCCAAATCCTAAAGGATTTTGT GACTTAAAAGGTAAGTATGTACAAATACCTACAACTTGTGCTAATGACCCTGTGGGTT TTACACTTAAAAACACAGTCTGTACCGTCTGCGGTATGTGGAAAGGTTATGGCTGTAG TTGTGATCAACTCCGCGAACCCATGCTTCAGTCAGCTGATGCACAATCGTTTTTAAAC GGGTTTGCGGTGTAAGTGCAGCCCGTCTTACACCGTGCGGCACAGGCACTAGTACTG ATGTCGTATACAGGGCTTTTGACATCTACAATGATAAAGTAGCTGGTTTTGCTAAATT CCTAAAAACTAATTGTTGTCGCTTCCAAGAAAAGGACGAAGATGACAATTTAATTGA TTCTTACTTTGTAGTTAAGAGACACACTTTCTCTAACTACCAACATGAAGAAACAATT TATAATTTACTTAAGGATTGTCCAGCTGTTGCTAAACAT

N gene:

ATGTCTGATAATGGACCCCAAAATCAGCGAAATGCACCCCGCATTACGTTTGGTGGA CCCTCAGATTCAACTGGCAGTAACCAGAATGGAGAACGCAGTGGGGGCGCGATCAAAA CAACGTCGGCCCCAAGGTTTACCCAATAATACTGCGTCTTGGTTCACCGCTCTCACTC AACATGGCAAGGAAGACCTTAAATTCCCTCGAGGACAAGGCGTTCCAATTAACACCA ATAGCAGTCCAGATGACCAAATTGGCTACTACCGAAGAGCTACCAGACGAATTCGTG GTGGTGACGGTAAAATGAAAGATCTCAGTCCAAGATGGTATTTCTACTACCTAGGAA CTGGGCCAGAAGCTGGACTTCCCTATGGTGCTAACAAAGACGGCATCATATGGGTTG CAACTGAGGGAGCCTTGAATACACCAAAAGATCACATTGGCACCCGCAATCCTGCTA ACAATGCTGCAATCGTGCTACAACTTCCTCAAGGAACAACATTGCCAAAAGGCTTCT ACGCAGAAGGGAGCAGAGGCGGCAGTCAAGCCTCTTCTCGTTCCTCATCACGTAGTC GCAACAGTTCAAGAAATTCAACTCCAGGCAGCAGTAGGGGGAACTTCTCCTGCTAGAA TGGCTGGCAATGGCGGTGATGCTGCTGCTTGCTTGCTGCTGCTGACAGATTGAACCA GCTTGAGAGCAAAATGTCTGGTAAAGGCCAACAACAACAAGGCCAAACTGTCACTAA GAAATCTGCTGCTGAGGCTTCTAAGAAGCCTCGGCAAAAACGTACTGCCACTAAAGC ATACAATGTAACACAAGCTTTCGGCAGACGTGGTCCAGAACAAACCCAAGGAAATTT TGGGGACCAGGAACTAATCAGACAAGGAACTGATTACAAACATTGGCCGCAAATTGC ACAATTTGCCCCCAGCGCTTCAGCGTTCTTCGGAATGTCGCGCATTGGCATGGAAGTC ACACCTTCGGGAACGTGGTTGACCTACACAGGTGCCATCAAATTGGATGACAAAGAT

CCAAATTTCAAAGATCAAGTCATTTTGCTGAATAAGCATATTGACGCATACAAAACAT TCCCACCAACAGAGCCTAAAAAGGACAAAAAGAAGAAGGACGGCTGATGAAACTCAAGCC TTACCGCAGAGACAGAAGAAACAGCAAACTGTGACTCTTCTTCCTGCTGCAGATTTG GATGATTTCTCCAAACAATTGCAACAATCCATGAGCAGTGCTGACTCAACTCAGGCCT AA

E gene:

ATGTACTCATTCGTTTCGGAAGAGAGAGAGAGGTACGTTAATAGTTAATAGCGTACTTCTTT TTCTTGCTTTCGTGGTATTCTTGCTAGTTACACTAGCCATCCTTACTGCGCTTCGATTG TGTGCGTACTGCTGCAATATTGTTAACGTGAGTCTTGTAAAAACCTTCTTTTACGTTTA CTCTCGTGTTAAAAATCTGAATTCTTCTAGAGTTCCTGATCTTCTGGTCTAA

Strategy	Reactions	Read-out Time	Signal intensity
Strategy 1	Quench and Recovery	20 min	1-fold
Strategy 2	Hybridization and Quench	11 min	3-fold

 Table S2. Comparison of two detection strategies

Method	LOD	Stability	Cost	Time	Ref
RT-PCR	100 cp/mL	high	~\$3/reaction	4 h	1
RT-qPCR	5 cp/reaction	high	~\$300/96 reactions	~1 h	2
LAMP	4.8 cp/µL	high	\$750/96 reactions	30 min	3
ReadiLAMP	20 cp/reaction	high	\$870/100 reactions	~30 min	4
Sherlock CRISPR	6.75 cp/µL	high	~\$10/reaction	~1 h	5
CRISPR DETECTR	10 cp/µL	high	\sim \$10/reaction	~30 min	6
Capacitive biosensor	10 nM	low	N/A	~1 h	7
Triple-mode biosensor	160 fM	high	N/A	40 min	8
Dual-functional	0.22 pM	low	N/A	~ 15 min	9
rGO-FET Biosensor	223 cp/µL	low	N/A	~30 min	10
rGO-based biosensor	0.684 pM	high	~\$3/96 reactions	15 min	This work

Table S3. Comparison of different SARS-CoV-2 RNA detection methods

Note: "Time" is the consumed time from sample loading to signal reading. As for the stability, Figure 6C demonstrated the PL intensity of reaction system. The reaction liquid needs to be stored in black since the fluorescence degrades quickly when exposed to light. LAMP and PCR based detection is also based on the fluorescence intensity reading, and has similar stability with the proposed work. While plasmonic, capacitor and FET based biosensors are easily affected by storage environment after reaction, and the stability is relatively low. In Table S3, it is hard to quantify the stability by detailed data, so only "high" and "low" are used.

Material	Method	Target	LOD	Time	Ref.
rGO	Electrochemical	30 nt	100 fM	4 h	11
rGO	Fluorescence	60 nt	0.8 pM	35 min	12
GO	Fluorescence	30 nt	5 pM	1 h	13
GO	Fluorescence	30 nt	1.18 nM	30 min	14
rGO-FET	Electrical	22 nt	100 fM	1 h	15
rGO-FET	Electrical	25 nt	0.37 fM	~30 min	10
rGO	Fluorescence	49 nt	0.684 pM	15 min	This work

 Table S4. Comparison of GO-derived biosensors

References

- 1. https://www.bgi.com/global/sars-cov-2-real-time-fluorescent-rt-pcr-kit-ivd
- 2. https://international.neb.com/products/e3019-luna-sars-cov-2-rt-qpcr-multiplex-assay-kit
- 3. Y. Zhang, N. Odiwuor, J. Xiong, L. Sun, R. O. Nyaruaba, H. Wei and N. A. Tanner, *medRxiv*, 2020, 2020.02.26.20028373.
- 4. <u>https://www.thermofisher.cn/cn/zh/home/life-science/dna-rna-purification-analysis/sars-cov-</u> 2/colorimetric-readilamp-sars-cov-2-kit.html.
- J. Joung, A. Ladha, M. Saito, M. Segel, R. Bruneau, M.-l. W. Huang, N.-G. Kim, X. Yu, J. Li, B. D. Walker, A. L. Greninger, K. R. Jerome, J. S. Gootenberg, O. O. Abudayyeh and F. Zhang, *medRxiv*, 2020, 2020.05.04.20091231.
- J. P. Broughton, X. Deng, G. Yu, C. L. Fasching, J. Singh, J. Streithorst, A. Granados, A. Sotomayor-Gonzalez, K. Zorn, A. Gopez, E. Hsu, W. Gu, S. Miller, C.-Y. Pan, H. Guevara, D. A. Wadford, J. S. Chen and C. Y. Chiu, *medRxiv*, 2020, 2020.03.06.20032334.
- 7. C. Hwang, N. Park, E. S. Kim, M. Kim, S. D. Kim, S. Park, N. Y. Kim and J. H. Kim, *Biosensors and Bioelectronics*, 2021, **185**, 113177.
- Y. Gao, Y. Han, C. Wang, L. Qiang, J. Gao, Y. Wang, H. Liu, L. Han and Y. Zhang, *Analytica Chimica Acta*, 2021, 1154, 338330.
- G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick and J. Wang, ACS Nano, 2020, 14, 5268-5277.
- 10. J. Li, D. Wu, Y. Yu, T. Li, K. Li, M.-M. Xiao, Y. Li, Z.-Y. Zhang and G.-J. Zhang, *Biosensors and Bioelectronics*, 2021, **183**, 113206.
- Z. Wang, J. Zhang, P. Chen, X. Zhou, Y. Yang, S. Wu, L. Niu, Y. Han, L. Wang, P. Chen, F. Boey, Q. Zhang, B. Liedberg and H. Zhang, *Biosensors and Bioelectronics*, 2011, 26, 3881-3886.
- 12. M. Liu, J. Song, S. Shuang, C. Dong, J. D. Brennan and Y. Li, ACS Nano, 2014, 8, 5564-5573.
- P. Alonso-Cristobal, P. Vilela, A. El-Sagheer, E. Lopez-Cabarcos, T. Brown, O. L. Muskens, J. Rubio-Retama and A. G. Kanaras, *ACS applied materials & interfaces*, 2015, 7, 12422-12429.
- 14. S. Zhang, K. Wang, K. B. Li, W. Shi, W. P. Jia, X. Chen, T. Sun and D. M. Han, *Biosens Bioelectron*, 2017, **91**, 374-379.
- 15. B. Cai, S. Wang, L. Huang, Y. Ning, Z. Zhang and G.-J. Zhang, ACS Nano, 2014, 8, 2632-2638.