Supporting Information

Synthesis of flower-like nickel-iron-chromium nanostructure compound deposited stainless steel foil as efficient binder-free electrocatalysts for water splitting

Caixia Zhou, *a Taotao Gao, ^b Jiong Tan, ^a Zhaozu Luo, ^a Lutfy Mutallip, ^a and Dan

Xiao*b

^a C. Zhou, J. Tan, Z Luo, L. Mutallip
College of Chemistry & Environment
Southwest Minzu University
Chengdu 610041, PR China
E-mail: cx_Zhou123@163.com
^b T. Gao, Prof. D. Xiao
College of Chemical Engineering
Sichuan University
Chengdu, 610065, P. R. China
E-mail: xiaodan@scu.edu.cn

Fig. S1 The photograph of blank SSF substrate and NICC/SSF electrode.

Fig. S2 The XRD patterns of SSF substrate and NICC/SSF samples before and after cycles.

Fig. S3 EDX spectra of the SSF substrate (a) and NICC/SSF (b) after electrodeposition.

Table S1. The element distribution on the surface of SSF (stainless steel film) and NICC/SSF determined from XPS.

NICC/SSF			
Element	Weight Conc.%		
Ni	33.99		
Fe	41.25		
Cr	11.61		
0	13.15		
SSF			
Element	Weight Conc.%		
Element Ni	Weight Conc.% 7.96		
Element Ni Fe	Weight Conc.% 7.96 71.96		
Element Ni Fe Cr	Weight Conc.% 7.96 71.96 19.37		

Fig. S4 The Full-scan XPS spectrum of NICC/SSF sample.

Fig. S5 (a and b) The LSV curves and Tafel plots of NICC/SSF samples at various deposition current; (c and d) The LSV curves and Tafel plots of NICC/SSF samples at different deposition time.

Fig. S6 (a) the polarization curves and (b) the corresponding Tafel plots of NICC/SSF electrodes at various electrodeposition current, (c) the polarization curves and (d) the corresponding Tafel plots at different electrodeposition time.

Fig. S7 The SEM images (a) and (b) of NICC/SSF electrodes after chronoamperometry test for HER.

Fig. S8 The EIS at 1.52 V vs. RHE of the blank SSF and NICC/SSF electrodes in 1 M KOH.

The alternating-current impedance of NICC/SSF electrode is less than that of the blank SSF, which indicates its favourable electron transport efficiency during the OER process. The nickel-ferrochrome compound on the SSF could drastically improve the conductivity of NICC/SSF electrode. Moreover, the characteristic 3D architecture is in favour of forming an efficient transport channel during the catalytic process. Therefore, NICC/SSF showed low resistance and high electron transport efficiency.

Fig. S9 The SEM images (a) and (b) of NICC/SSF electrodes after chronoamperometry test for OER.

Fig. S10 Typical CV curves of NICC/SSF (a) and blank SSF (b) with scan rates ranging from 5 mV s⁻¹ to 100 mV s⁻¹ and the scanning potential range is from 0.97 V to 1.07 V; (c) linear fitting of the oxidation currents of the catalysts at 1.02 V vs. RHE versus scan rates.

Fig. S11 Long-term stability test of NICC/SSF as both anode and cathode at a constant current density of 100 mA cm⁻² in 1 M KOH;

Catalysts	Current denstity (j, mA cm ⁻²)	Overpotential at the correspondin g j (mV)	Tafel slope (mV dec ⁻¹)	References
Ni _{1.5} Co _{0.5} @ N-C NT/NF	10	114	117	1
CuO@Ni/NiFe hydroxide	10	125	86	2
Porous Ni-Cr-Fe alloy	/	/	130	3
CoNiS _x /NF-25	10	123	89	4
Co-NCNTFs//NF	10	141		5
NiO nanorod arrays	10	110	100	6
P-substituted CoSe ₂	10	92	90	7
core-shell CuCo ₂ S ₄ /NiCo ₂ S ₄	10	206	90	8
Co ₃ O ₄ @Ni	10	130	53	9
porous CuCo ₂ O ₄ nanosheet	10	115	153	10
Sandwich-like	10	113	73.1	11
NiSe ₂ /Ni ₂ P@FeP				
NICC/SSF	10/20	85/112	85	This work
Pt/C	10/20	53/72	78	This work

 Table S2. Comparison of HER performances in 1.0 M KOH for NICC/SSF with other catalysts.

Catalysts	Current denstity (j, mA cm ⁻²)	Overpotential at the corresponding j (mV)	Tafel slope (mV dec ⁻¹)	References
trimetallic NiFeCr LDH	10	280	130	12
Ni-Fe LDH hollow nanoprisms	10	280	49.4	13
NiFeCr-LDHs/g-C ₃ N ₄)	10	223	89	14
Fe–NiCr ₂ O ₄ /NF	20	228	57	15
Porous Ni ₈ Fe ₂ alloy	10	269	42.5	16
NiOOH-decorated α-FeOOH nanosheet array (ASF)	10	256	45	17
NiCo ₂ O ₄ @C@NF	10	242	86	18
ZnFeCo LDH	10	221	58.7	19
CoNG/Ru nanocomposites	10	350	82.3	20
O-incorporated CoP	10	310	83.5	21
CoFe ₂ O ₄ /C NRAs	10	240	45	22
core-shell CuCo ₂ S ₄ /NiCo ₂ S ₄	10	270	57	23
NiCoP/C nanoboxes	10	330	96	24
NiMn LDH	10	350	40	25
α -Co ₄ Fe(OH) _x nanosheets	10	295	52	26
NICC/SSF	10	274	42	This work
RuO ₂ /SSF	10	305	58	This work

Table S3. Comparisons of the various OER catalysts in alkaline electrolyte according to the reports and this paper.

Catalysts	Current denstity (j, mA cm ⁻²)	Cell voltage (V)	References
Co(OH) ₂ @NCNTs	10	1.72	27
Co ₅ Mo _{1.0} O NSs//Co ₅ Mo _{1.0} P NSs	10	1.68	28
N-NiCo ₂ O ₄ @C@NF	10	1.67	29
SSFS	10	1.64	30
NiFe LDH@NiCoP	10	1.57	31
CoFe Oxyhydroxide NSs	10	1.64	32
P-Co ₃ O ₄ NWs	10	1.63	33
NICC/SSF	10/20	1.60/1.67	This work

Table S4. Comparisons of different bifunctional electrocatalysts for overall water splitting in 1.0M KOH solution.

References

- T. F. Li, S. L. Li, Q. Y. Liu, J. W. Yin, D. M. Sun, M. Y. Zhang, L. Xu, Y. W. Tang and Y. W. Zhang, *Adv. Sci.*, 2020, 7, 1902371.
- [2] Y. H. Liu, Z. Y. Jin, X. Q. Tian, X. Q. Li, Q. Zhao and D. Xiao, *Electrochim. Acta*, 2019, 318, 695-702.
- [3] Y. F. Xiao, Y. Liu, Z. Tang, L. Wu, Y. Zeng, Y. F. Xua and Y. H. He, RSC Adv., 2016, 6, 51096-51105.
- [4] W. T. Lu, X. W. Li, F. Wei, K. Cheng, W. H. Li, Y. H. Zhou, W. Q. Zheng, L. Pan and G. Zhang, ACS Sustainable Chem. Eng., 2019, 7, 12501-12509.
- [5] Q. Y. Yuan, Y. X. Yu, Y. J. Gong and X. F. Bi, ACS Appl. Mater. Interfaces, 2020, 12, 3592-3602.
- [6] T. Zhang, M. Y. Wu, D. Y. Yan, J. Mao, H. Liu, W. B. Hu, X. W. Du, T. Ling and S. Z. Qiao, *Nano Energy*, 2018, 43, 103-109.
- [7] Y. P. Zhu, H. C. Chen, C. S. Hsu, T. S. Lin, C. J. Chang, S. C. Chang, L. D. Tsai and H. M. Chen, ACS Energy Lett., 2019, 4, 987-994.
- [8] L. Ma, J. W. Liang, T. Chen, Y. J. Liu, S. Z. Li and G. J. Fang, *Electrochim. Acta*, 2019, 326, 135002.
- [9] R. C. Li, D. Zhou, J. X. Luo, W. M. Xu, J. W. Li, S. W. Li, P. P. Cheng and D. S. Yuan, J. Power Sources, 2017, 341, 250-256.
- [10] A. T. A. Ahmed, S. M. Pawar, A. I. Inamdar, H. Kim and H. Im, *Adv. Mater. Interfaces*, 2020, 7, 1901515.
- [11] J. H. Lin, H. H. Wang, Y. T. Yan, J. Cao, C. Q. Qu, X. H. Zheng, J. C. Feng and J. L. Qi, J. Power Sources, 2020, 445, 227294.
- [12] Y. Yang, L. N. Dang, M. J. Shearer, H. Y. Sheng, W. J Li, J. Chen, P. Xiao, Y. H. Zhang, R. J. Hamers and S. Jin, *Adv. Energy Mater.*, 2018, 8, 1703189.
- [13] L. Yu, J. F. Yang, B. Y. Guan, Y. Lu and X. W. (David) Lou, Angew. Chem. Int. Ed., 2018, 57, 172-176.
- [14] G. Chen, J. Liu, Y. li, P. Anand, W. Wu, Y. Chen and C. L. Xu, *Nanotechnology*, 2019, 30, 494001.
- [15] J. X. Zhao, X. H. Li, G. W. Cui and X. P. Sun, Chem. Commun., 2018, 54, 5462-5465.

- [16] W. B. Li, Q. F. Hu, Y. W. Liu, M. M. Zhang, J. J. Wang, X. P. Han, C. Zhong, W. B. Hu and Y. D. Deng, *J. Mater. Sci. Technol.*, 2020, **37**, 154-160.
- [17] D. B. Zhang, X. G. Kong, M. H. Jiang, D. Q. Lei and X. D. Lei, ACS Sustainable Chem. Eng., 2019, 7, 4420-4428.
- [18] Y. Ha, L. X. Shi, X. X. Yan, Z. L. Chen, Y. P. Li, W. Xu and R. B. Wu, ACS Appl. Mater. Interfaces, 2019, 11, 45546-45553.
- [19] J. X. Han, J. Zhang, T. T. Wang, Q. Xiong, W. Wang, L. X. Cao and B. H. Dong, ACS Sustainable Chem. Eng., 2019, 7, 13105-13114.
- [20] T. He, Y. Peng, Q. X. Li, J. E. Lu, Q. M. Liu, R. Mercado, Y. Chen, F. Nichols, Y. Zhang and S. W. Chen, ACS Appl. Mater. Interfaces, 2019, 11, 46912-46919.
- [21] G. Y. Zhou, M. Li, Y. L. Li, H. Dong, D. M. Sun, X. E. Liu, L. Xu, Z. Q. Tian and Y. W. Tang, *Adv. Funct. Mater.*, 2020, **30**, 1905252.
- [22] X. F. Lu, L. F. Gu, J. W. Wang, W. J. Wu, P. Q. Liao and G. R. Li, Adv. Mater., 2017, 29, 1604437.
- [23] L. Ma, J. W. Liang, T. Chen, Y. J. Liu, S. Z. Li and G. J. Fang, *Electrochim. Acta*, 2019, 326, 135002.
- [24] P. L. He, X. Y. Yu and X. W. Lou, Angew. Chem. Int. Ed., 2017, 56, 3897-3900.
- [25] A. Sumboja, J. W. Chen, Y. Zong, P. S. Lee and Z. L. Liu, Nanoscale, 2017, 9, 774-780.
- [26] H. Y. Jin, S. J. Mao, G. P. Zhan, F. Xu, X. B. Bao and Y. Wang, J. Mater. Chem. A, 2017, 5, 1078-1084.
- [27] P. Guo, J. Wu, X. B. Li, J. Luo, W. M. Lau, H. Liu and X. L. Sun, Nano Energy, 2018, 47, 96-104.
- [28] Y. Zhang, Q. Shao, S. Long and X. Huang, Nano Energy, 2018, 45, 448-55.
- [29] Y. Ha, L. X. Shi, X. X. Yan, Z. L. Chen, Y. P. Li, W. Xu and R. B. Wu, ACS Appl. Mater. Interfaces, 2019, 11, 45546-45553.
- [30] X. Liu, B. You and Y. J. Sun, ACS Sustainable Chem. Eng., 2017, 5, 4778-4784.
- [31] P. Babar, A. Lokhande, H. H. Shin, B. Pawar, M. G. Gang and S. Pawar, Small, 2018, 14, 1702568.
- [32] H. J. Zhang, X. P. Li, A. Hähnel, V. Naumann, C. Lin, S. Azimi, S. L. Schweizer, A. W. Maijenburg and R. B. Wehrspohn, *Adv. Funct. Mater.*, 2018, 28, 1706847.
- [33] Z. Wang, H. Liu, R. Ge, X. Ren, J. Ren, D. Yang, L. Zhang and X. Sun, ACS Catalysis, 2018, 8,

2236-2241.