Supplementary Information

Selective hydrogenolysis of furfural into fuel-additive 2-methylfuran over rhenium-promoted copper catalyst

Jirawat Chuseang a, Rapeepong Nakwachara a, Munsuree Kalong a, Sakhon Ratchahat a, Wanida

Koo-amornpattana ^a, Wantana Klysubun ^b, Pongtanawat Khemthong ^c, Kajornsak Faungnawakij

^c, Suttichai Assabumrungrat ^{d,e}, Vorranutch Itthibenchapong ^c, and Atthapon Srifa ^{a,*}

^a Department of Chemical Engineering, Faculty of Engineering, Mahidol University, Nakhon Pathom 73170, Thailand

^b Synchrotron Light Research Institute, Nakhon Ratchasima, 30000, Thailand

^c National Nanotechnology Center (NANOTEC), National Science and Technology

Development Agency, Pathum Thani 12120, Thailand

^d Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand

^e Bio-Circular-Green-economy Technology & Engineering Center, *BCG*eTEC, Department of

Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330,

Thailand

* To whom correspondence should be addressed.

Tel.: +66(0)2 889-2138 ext. 6101-3; Fax: +66(0)2 889-2138 ext. 6129

E-mail address: atthapon.sri@mahidol.edu (A. Srifa)

Table S1 Mass balance of the liquid product after reaction (200 $^{\circ}$ C, 2 h, and 20 bar H₂) over

the Cu, C	$Cu_1Re_{0.14}$,	and Re	catalysts.
-----------	-------------------	--------	------------

Sample	Mass balance (%)
Cu	99.2
$Cu_1Re_{0.14}$	99.7
Re	99.3

Table S2 Liquid product composition by GC-MS analysis obtained from the reaction using Cuand $Cu_1Re_{0.14}$ catalysts at reaction temperature of 200°C, initial H2 pressure of 20 barandtime for 2 h.

Product	% Area by GC-MS analysis	
Floduct	Cu	Cu ₁ Re _{0.14}
2-Methylfuran	31.8	46.1
2-Methyltetrahydrofuran	6.4	11.6
1-Pentanol	2.8	3.2
Furfuryl alcohol	34.5	10.9
Tetrahydrofurfuryl alcohol	1.8	1.8
1,2-Pentanediol	6.2	6.3
1,4-Pentanediol	8.5	14.6
Isopropyl furfuryl ether	8.0	5.6

	Meta	etal content Re/Cu	
Sample	Re	Cu	Ke/Cu
-	(1	wt.%)	mole ratio
Cu	0	12.8	-
$Cu_1Re_{0.04}$	1.4	11.3	0.04
$Cu_1Re_{0.14}$	4.0	9.6	0.14
$Cu_1Re_{0.34}$	7.2	7.2	0.34
Re	15.7	0	-

Table S3 Metal contents of the catalysts as determined by XRF analysis.

Table S4 Metal content by SEM-EDS analysis of the fresh and spent $Cu_1Re_{0.14}$ catalysts after thereaction test at a reaction temperature of 200 °C, initial H2 pressure of 20 bar, andreaction time for 2 h.

	Metal content	Metal content by SEM-EDS analysis	
Sample	Cu	Re	
	(wt.%)		
Fresh Cu ₁ Re _{0.14}	9.5	4.4	
Spent Cu ₁ Re _{0.14}	10.1	4.5	

Fig. S1 TGA profile of the NH₄ReO₄ precursor decomposition in air.

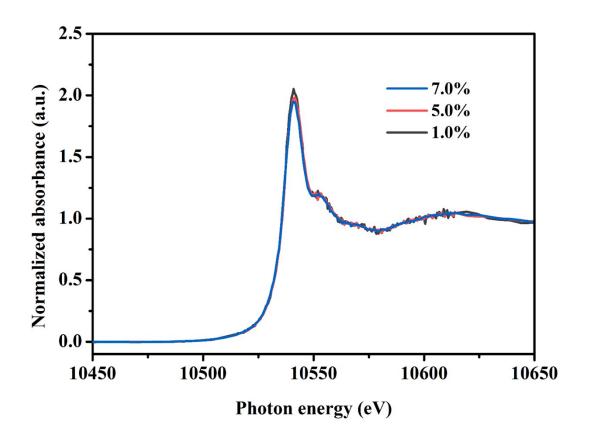


Fig. S2 Representative normalized Re L₃-edge XANES spectra of the NH₄ReO₄ standard with different Re contents.

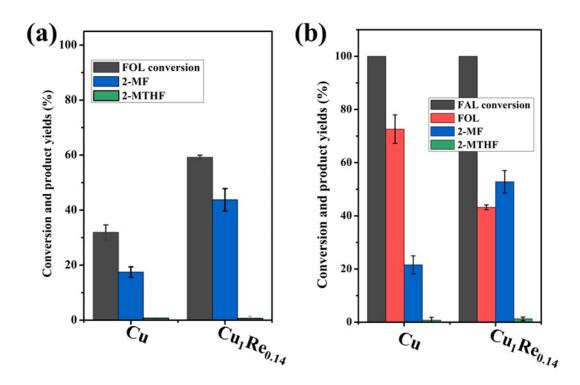


Fig. S3 Comparative study of Cu and Cu₁Re_{0.14} catalysts using (a) a primary intermediate FOL and (b) FAL as the reactants to generate the target 2-MF at a reaction temperature of 200 °C, initial H₂ pressure of 20 bar, and reaction time for 30 min. The catalyst loading was 20 wt.% based on initial mass of FAL.

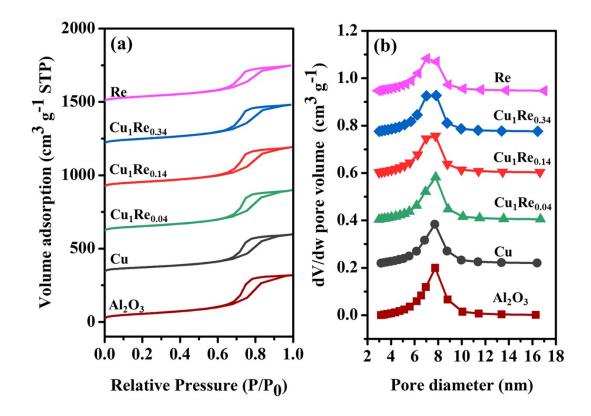
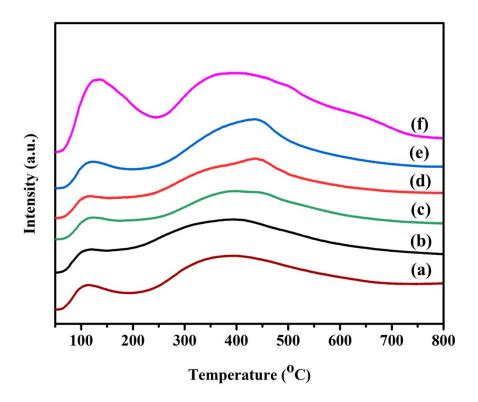



Fig. S4 (a) N_2 adsorption and desorption isotherms and (b) pore size distribution of the γ -Al₂O₃ and the calcined Cu, Cu₁Re_{0.04}, Cu₁Re_{0.14}, Cu₁Re_{0.34}, and Re samples.

Fig. S5 NH₃-TPD profiles of the fresh (a) γ -Al₂O₃, (b) Cu, (c) Cu₁Re_{0.04}, (d) Cu₁Re_{0.14}, (e)

Cu₁Re_{0.34}, and (f) Re catalysts.

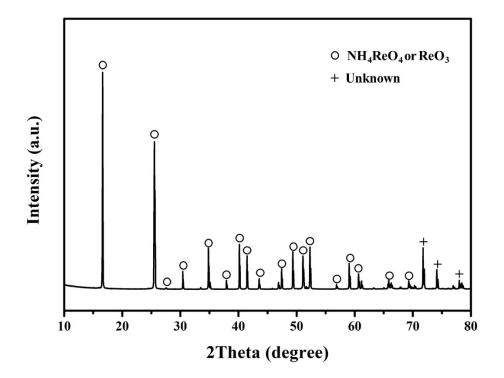


Fig. S6 XRD pattern of the NH_4ReO_4 precursor calcined at 300 °C for 3 h.

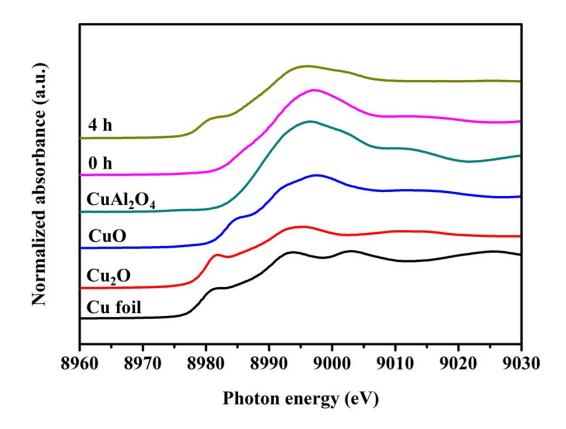


Fig. S7 The *ex situ* normalized Cu K-edge XANES spectra of the Cu catalyst with different reaction times (0 and 4 h) at a reaction temperature of 200 °C and initial H₂ pressure of 20 bar, and the Cu foil, Cu₂O, CuO, and CuAl₂O₄ standards.

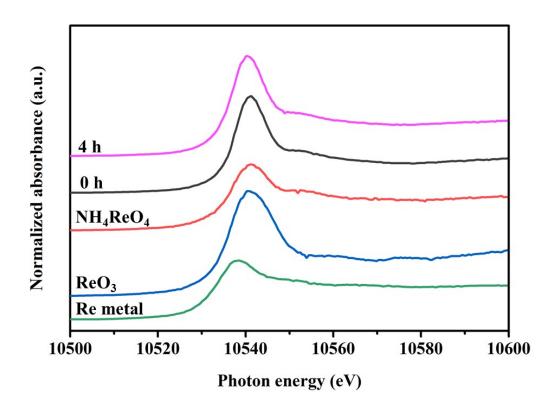


Fig. S8 The *ex situ* normalized Re L₃-edge XANES spectra of the Re catalyst with different reaction times (0 and 4 h) at a reaction temperature of 200 °C and initial H₂ pressure of 20 bar, and the Re metal, ReO₃, and NH₄ReO₄ standards.

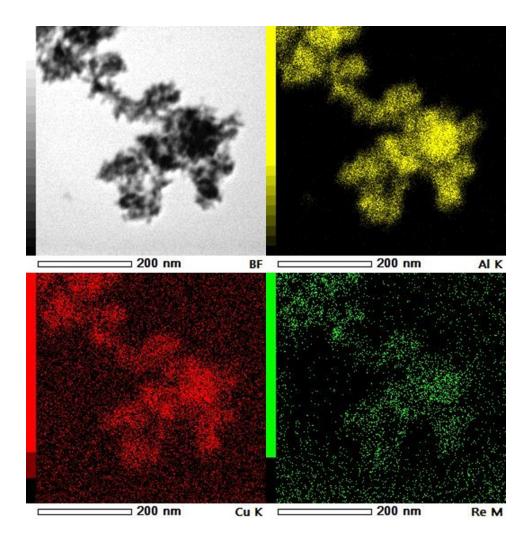


Fig. S9 Representative EDS mapping of the spent $Cu_1Re_{0.14}$ catalyst.

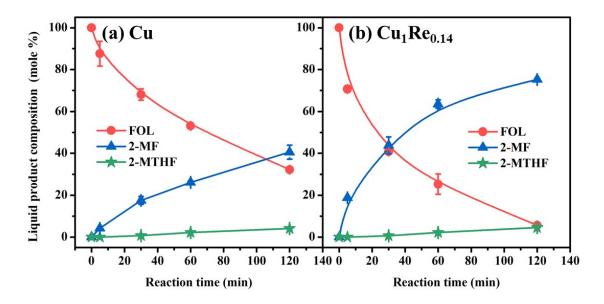


Fig. S10 Influence of the reaction time (5–120 min) on the liquid product composition for the FOL hydrogenolysis at 200 °C over the (a) Cu and (b) Cu₁Re_{0.14} catalysts. The catalyst loading was 20 wt.% based on initial mass of FAL.

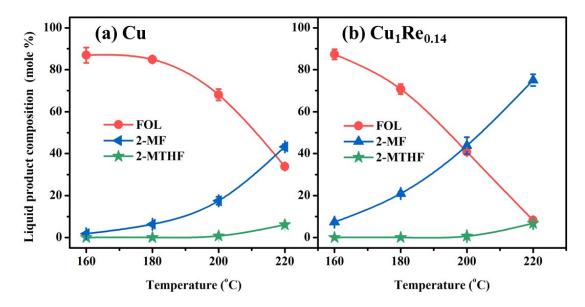


Fig. S11 Influence of the reaction temperature (160-220 °C) on the liquid product composition in the FOL hydrogenolysis for 30 min over the (a) Cu and (b) Cu₁Re_{0.14} catalysts. The catalyst loading was 20 wt.% based on initial mass of FAL.

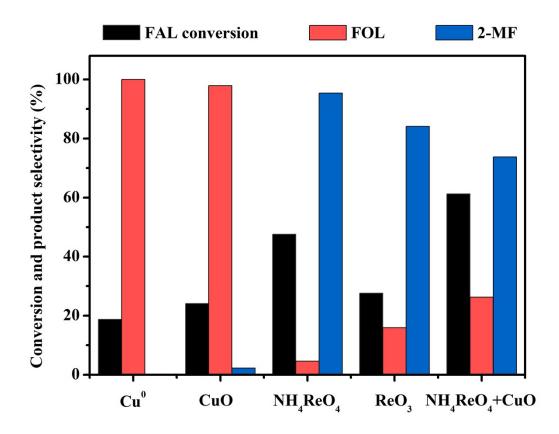


Fig. S12 Catalytic performance for FAL hydrogenolysis over Cu, CuO, ReO₃, NH₄ReO₄, and mixed NH₄ReO₄-CuO species at a reaction temperature of 200 °C, initial H₂ pressure of 20 bar, and reaction time for 30 min. The catalyst loading was 20 wt.% based on initial mass of FAL.

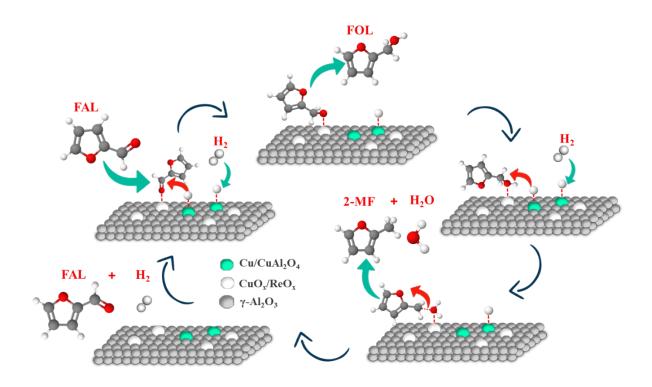


Fig. S13 Proposed reaction mechanism for FAL hydrogenolysis over the Cu₁Re_{0.14} catalyst.

Fig. S14 TGA profiles of the fresh and spent Cu catalyst in air.