Supporting Information

One-step construction of Co₂P nanoparticles encapsulated in N, P co-doped biomass-based porous carbon as bifunctional

efficient electrocatalysts for overall water splitting

Di Li^a, Zengyong Li^a, Jiaojiao Ma^a, Xinwen Peng*^a and Chuanfu Liu*^a

* Corresponding authors (<u>chfliu@scut.edu.cn</u>, <u>fexwpeng@scut.edu.cn</u>)

^a State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510641, P. R. China

Electrode preparation and electrochemical measurement

All electrochemical tests were conducted with a standard three-electrode system at the electrochemical workstation. A graphite rod and saturated calomel electrode (SCE) were used as the counter and reference electrode, respectively. All potentials were referenced to the reversible hydrogen electrode (RHE) by the equation $E_{RHE}=E_{(SCE)}$ + 0.0591 pH + 0.241. Typically, 2.5 mg of the catalyst powders was dispersed in 480 μ L of a 3:1 v/v water/ethanol mixed solvents along with 20 μ L of Nafion solution, and the mixture was sonicated for about 45 min to generate a homogeneous catalyst ink. Then, 5 µL of the catalyst ink was drop-casting onto a polished glass carbon electrode, leading to a catalyst loading of 0.35 mg cm⁻². Polarization curves were acquired by sweeping the potential from 0 to -0.8 V (vs SCE) at a potential sweep rate of 5 mV/s. Accelerated stability tests were performed in 0.5 M H₂SO₄ at room temperature by potential cycling between 0 to -0.8 V (vs SCE) at a potential sweep rate of 100 mV/s for a given number of cycles. The pH durability of catalyst was processed in different electrolyte media (0.5 M H₂SO₄, 1 M KOH). In all measurements, the SCE reference electrode was calibrated with respect to a reversible hydrogen electrode (RHE). The electrochemical impedance spectroscopy (EIS) was carried out in the range from 10⁵ to 0.01 Hz. All the experiments were processed at room temperature. The OER activities were measured by linear sweep voltammetry (LSV) method with a scan rate of 5 mV s⁻¹ at room temperature in 1 M KOH solution. The stability measurements were tested by cyclic voltammetry scanning 1000 cycles (CV, sweep rate, 100 mV s⁻¹) and long-term chronoamperometry method. EIS was

carried out in the range from 10^5 to 0.01 Hz. The electrochemically surface area (ECSA) also was investigated by CV to determine the electrochemical double-layer capacitances (C_{dl}). For overall-water splitting studies, the full electrolyze configuration was assembled using Co₂P@NPPC loaded on a carbon cloth as a two-electrode with the catalyst loading of 1.25 mg cm⁻².

DFT calculations

The VASP program¹⁻² was used for calculations. PBE functional³ was employed, and the ENCUT parameter was set to 500 eV. The reciprocal space was sampled with Gamma point. Both lattice parameters and atom positions were fully optimized for each structure.⁴ The Grimme's D3BJ correction⁵ was employed to take account of dispersion interaction.

Fig. S1. Molecular structure of PA.

Fig. S2. FTIR spectra of CS and CS-PA-Co, respectively.

Fig. S3. Surface characterization of Co₂P@NPPC. SEM image, and the corresponding EDS element mappings of C, N, O, P and Co.

Fig. S4. SEM images of $Co(PO_3)_2$ @NPPC-700 (a, b) and $Co(PO_3)_2$ @NPPC-800 (c, d)

Fig. S5. Morphology and structure of the Co@NPC

Fig. S6. EDX spectrum of the $Co_2P@NPPC$

Fig. S7. X-ray diffraction (XRD) spectra of Co(PO₃)₂@NPPC-700 and Co(PO₃)₂@NPPC-800

Fig. S8. (a) XPS survey spectrum, and (b-d) the high resolution XPS spectra of Co(PO₃)₂@NPPC-700 and Co(PO₃)₂@NPPC-800.

Fig. S9. The content of different N species in $Co(PO_3)_2$ @NPPC-700, $Co(PO_3)_2$ @NPPC-800 and Co_2P @NPPC-900.

Fig. S10. Raman spectra of $Co_2P@NPPC$, Co@NPC and NPPC (a), and samples pyrolyzed at different temperatures (b).

Fig. S11. N_2 adsorption-desorption isotherms of $Co_2P@NPPC$ and inset is the distributions of pores of $Co_2P@NPPC$.

Fig. S12. (a) HER polarization curves of Co₂P@NPPC, Co@NPC, NPPC and Pt/C in 1 M KOH. (b) The corresponding Tafel slopes of all samples.

Fig. S13. (a, b) HER polarization curves and (c, d) the corresponding Tafel plots of $Co_2P@NPPC-$ 900, and the compared samples in 0.5 M H₂SO₄ and 1 M KOH with a scan rate of 5 mV s⁻¹ at room temperature, respectively.

Fig. S14. (a) HER polarization curves of $Co_2P@NPPC$ before and after 1000 cycles of CV and (b) the insets are the chronoamperometric curves in 1 M KOH.

Fig. S15. (a, b) CV curves of $Co_2P@NPPC$ and Co@NPC at different scan rates.

Fig. S16. (a-c) CV curves of $Co_2P@NPPC$ and the compared samples pyrolyzed at different temperatures, and (d) the variation of double layer charging currents as a function of scan rate.

Fig. S17. (a) OER polarization curves and (b) the corresponding overpotentials at $j = 10 \text{ mA cm}^{-2}$ in 1 M KOH of Co₂P@NPPC, and the compared samples pyrolyzed at different temperatures.

Fig. S18. CV curves of (a) Co₂P@NPPC , (b) Co@NPC and (c) NPPC at different scan rates.

Fig. S19. (a, b) SEM images of $Co_2P@NPPC$ after HER and OER test, respectively. High-resolution scans of (c, d) Co 2p and (e, f) P 2p spectra after HER and OER test.

Fig. S20. Chronopotentiometric curve of water electrolysis in 1 M KOH.

Fig. S21. Side view and top view of the models of Co@NPC (a, b and c) and Co(PO₃)₂@NPPC (d, e and f) of the optimized structure of H adsorption on Co and Co(PO₃)₂@NPPC surface, respectively.

Samples	Co(PO ₃) ₂ @NPPC-700	Co(PO ₃) ₂ @NPPC-800	Co ₂ P@NPPC-900
C (at%)	73.23	79.7	88.21
N (at%)	4.54	3.87	1.73
O (at%)	17.24	12.68	7.34
P (at%)	4.27	2.99	1.68
Co (at%)	0.71	0.75	1.03

Table S1. XPS elemental analysis of Co₂P@NPPC and Co(PO₃)₂@NPPC samples.

Samples	BET surface	Pore volume	Pore size
	areas	(cm^{3}/g)	(nm)
	(m^{2}/g)		
Co ₂ P@NPPC	1380	1.18	3.44

Table S2. The BET surface areas, BJH pore volume and Pore size of $Co_2P@NPPC$

Catalyst	Voltage@10mA cm ⁻	Tafel slope	Reference
	2	(mV dec ⁻¹)	
	(mV)		
Co ₂ P@NPPC	147	62	This work
Ni _{0.62} Co _{0.38} P	166	72	Adv. Funct. Mater. 2016,
			26, 7644-7651
MoP NSs/CFs	200	56	Appl. Catal. B 2015, 164,
			144-150
Co ₉ S ₈ @MoS ₂ /CNFs	190	110	Adv. Mater. 2015, 27, 4752-
			4759
Fe _{0.43} Co _{0.57} S ₂	220	56	Energy Environ. Sci. 2013,
			6, 3553-3558
FeP	250	67	Chem. Commun. 2013, 49,
			6656-6658
Co@NC	210	108	J. Mater. Chem. A 2014, 2,
			20067-20074
Co@NC/NG	180	79	Chem. Mater. 2015, 27,
			2026-2032
NG/Co-doped C	229	126	Adv. Funct. Mater. 2015,
			25, 872-882
Au@Zn-Fe-C	123	78.2	ACS Catal. 2016, 6, 1045-
			1053
WP ₂	161	57	ACS Catal. 2015, 5, 145-
			149
Ni-Co-P nanocube	150	60.6	Chem. Commun. 2016, 52,
			1633-1636
Ni-Co-MoS ₂	155	51	Adv. Mater. 2016, 28, 9006-
			9011
MoP@PC	153	66	Angew. Chem. Int. Ed. 2016,
			55, 12854-12858
Fe doped NiS ₂	198	42	J. Mater. Chem. A 2019, 7,
			4971-4976
CoP@NG	158	63.8	Electrochim. Acta 2019, 307,
			543-552
CoP hollow	159	59	ACS Appl. Mater. Interfaces
polyhedra			2016,
			8, 2158-2165
2D Co ₂ P	41	35	Nanoscale, 2018,10, 6844-

Table S3. Comparision of HER performance in 0.5 M H_2SO_4 solution for $Co_2P@NPPC$ with other non-noble metal electrocatalysts.

	6849

Catalyst	Voltage@10mA	Tafel slope	Reference
	cm ⁻²	(mV dec ⁻¹)	
	(mV)		
Co ₂ P@NPPC	240	87	This work
CoP/CC	209	129	J. Am. Chem. Soc. 2014,
			136, 7587-7590
CoOx@CN	232	115	J. Am. Chem. Soc. 2015,
			137, 2688-2694
NiCoP/rGO	209	124.1	Adv. Funct. Mater. 2016,
			26, 6785-6796
Co ₉ S ₈ @C	250	-	ACS Appl. Mater.
			Interfaces 2015, 7, 980-
			988
Mo ₂ C	270	78	J. Am. Chem. Soc. 2015,
			137, 7035-7038
Co-NRCNTs	370	-	Angew. Chem. Int. Ed.
			2014, <i>53</i> , 4372-4376
CoO _x @CN	232	115	J. Am. Chem. Soc. 2015,
			137, 2688-2694.
Ni/Mo ₂ C-PC	179	101	Chem. Sci. 2017, 8, 968-
			973
Co-PCNFs	249	92	J. Mater. Chem. A 2016,
			4, 12818-12824
MnNi	360	-	Adv. Funct. Mater. 2015,
			25, 393-399
FeP	218	146	ACS Catal. 2014, 4,
			4065-4069
Pt-Co ₂ P	2	44	Energy Environ. Sci.
			2020 , 13, 3110-3118

Table S4. Comparision of HER performance in 1 M KOH solution for $Co_2P@NPPC$ with other non-noble metal electrocatalysts.

Catalyst	Voltage@10mA cm ⁻²	Tafel slope	Reference
	(mV)	(mV dec ⁻¹)	
Co ₂ P@NPPC	316	98	This work
NiCoP	340	86	<i>Adv. Mater. Interfaces</i> 2016 , <i>3</i> , 1500454
PNC@Co	370	76	J. Mater. Chem. A 2016, 4, 3204-3209.
CoO _x @CN	385	-	J. Am. Chem. Soc. 2015, 137, 2688-2694
CoP NPs/C	340	99	ACS Catal. 2015, <i>5</i> , 6874- 6878
Co ₃ O ₄ @C/CP	370	82	Nano Energy 2016 , 25, 42- 50
CoFeO _x film	360	-	J. Am. Chem. Soc. 2013, 135, 16977-16987
Co ₉ S ₈ @MoS ₂ /CNFs	430	61	Adv. Mater. 2015, 27, 4752- 4759
C-Co NPs	390	-	J. Am. Chem. Soc. 2015, 137, 7071-7074
Co-P film	345	47	Angew. Chem. Int. Ed. 2015, 54, 6251-6254
CoP-MNA/Ni Foam	390	65	Adv. Funct. Mater. 2015, 25, 7337-7347
Co-P@NC-800	370	79	ACS Appl. Mater. Interfaces 2017, 9, 40171-40179
NiCoP/C nanoboxes	330	96	Angew. Chem. Int. Ed. 2017, 56, 3897-3900
Co-C ₃ N ₄ /CNT	380	68.4	J. Am. Chem. Soc. 2017, 139, 3336-3339
Co-P/NC	354	52	Chem. Mater. 2015, 27, 7636- 7642
Mo ₂ C@CS	380	98	<i>ChemSusChem</i> 2017 , 10, 3540-3546
Co ₃ O ₄ @BP	400	63	ACS Appl. Mater. Interfaces 2019, 11, 17459-17466
Co ₂ P@NC-Fe ₂ P	260	41	ACS Appl. Mater. Interfaces 2020, 12, 25884–25894
Co/P/N-CNP-5/NF	311	67.7	Electrochim. Acta 2020, 337,

Table S5. Comparision of OER performance in 1 M KOH solution for $Co_2P@NPPC$ with other non-noble metal electrocatalysts.

			135807
CoO/Co _x P	370	101	J. Mater. Chem. A 2020, 8,
			9177-9184.

Table S6.	Comparison	with variou	s electrocatalys	ts for overal	l water	splitting	in 1	Μ
KOH solı	ution							

Catalyst	Voltage@10mA	Reference
	cm ⁻²	
	(V)	
Co ₂ P@NPPC	1.65	This work
Co ₃ O ₄ crystals	1.91	Chem. Commun. 2015, 51, 8066-
		8069
Co-S sheets	1.743	ACS Nano 2016, 10, 2342-2348
Ni ₃ S ₂	1.76	J. Am. Chem. Soc. 2015, 137,
		14023-14026
CoP/rGO	1.7	Chem. Sci. 2016, 7, 1690-1695
Ni ₅ P ₄	~1.7	Angew. Chem. Int. Ed. 2015, 54,
		12361-12365
Co ₂ B	1.81	Adv. Energy Mater. 2016, 6,
		1502313
Co ₂₄ Ni ₁ B ₇₅ @NF	1.72	J. Mater. Chem. A 2017, 5,
		12379-12384
Ni _x Co ₃ -xO ₄	1.75	ACS Appl. Mater. Interfaces
NiCo/NiCoO _x		2016, <i>8</i> , 3208-3214
CoTe ₂ @NCNTFs	1.67	J. Mater. Chem. A 2018, 6, 3684-
		3691
Mo ₂ C@CS	1.73	ChemSusChem 2017, 10, 3540-
		3546
Co-P/NC	~1.71	Chem. Mater. 2015, 27, 7636-
		7642
EG/Co _{0.85} Se/NiFe-LDH	1.67	Energy Environ. Sci. 2016, 9, 478-
		483
NiCo ₂ S ₄ NA	1.68	Nanoscale 2015, 7, 15122-15126
CoO/MoO _x	1.72	ACS Sustainable Chem. Eng.
		2016 , 4, 3743-3749
Ni ₅ P ₄ film	~1.69	Angew. Chem. Int. Ed. 2015, 54,
		12361-12365
Cr _{0.2} Co _{1.8} P/CB	1.63	ACS Appl. Mater. Interfaces 2020,
		12, 47397–47407
BP/Co ₂ P	1.92	Angew. Chem. Int. Ed. 2018, 57,
		2600-2604
$CoP-Co_2P@PC$	1.57	Small 2019 15 1804546

Reference

(1) G. Kresse; Furthmiiller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. *Comput. Mater. Sci.* **1996**, *6*, 15-50.

(2) G. Kresse; Furthmiiller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B: Condens. Matter* **1996**, *54*, 11169-11186.

(3) John P. Perdew; Kieron Burke; Ernzerhof, M. Generalized Gradient Approximation Made Simple. *Phys. Rev. Lett.* **1996**, *77*, 3865-3868.

(4) Kong, F.; Longo, R. C.; Yeon, D.-H.; Yoon, J.; Park, J.-H.; Liang, C.; Kc, S.; Zheng, Y.; Doo, S.-G.; Cho, K. Multivalent Li-Site Doping of Mn Oxides for Li-Ion Batteries. *J. Phys. Chem. C* 2015, *119*, 21904-21912.
(5) Stefan Grimme; Jens Antony; Stephan Ehrlich; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. *J. Chem. Phys.* 2010, *132*, 154104.