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Figure S1. The corresponding NiPS3 crystal structure from the top view in the plane of 
(001) and the side view of NiPS3.

Figure S2. Raman spectra of prepared NiPS3 nanosheets.



Figure S3. The low-magnification SEM image of NiPS3/Ni.

Figure S4. EDX spectrum of NiPS3 nanosheets.



Figure S5. XRD patterns of the as-prepared Ni2P/Ni and NiS2/Ni.

Figure S6. SEM images of the as-prepared Ni2P/Ni (a,b) and NiS2/Ni (c,d).



Figure S7. The high resolution of the (a) Ni 2p, (c) P 2p of Ni2P. The high resolution 
of the (b) Ni 2p, (d) S 2p of NiS2.



Table S1. HER performance of NiPS3/Ni as compared to other state-of-the-art MPS3 
catalysts and transition metal-based catalysts in alkaline electrolyte.

Catalysts Ƞ10 (mV) Tafel slopes
mV dec-1 References

NiPS3/Ni 74 86 This work

Ni0.9Fe0.1PS3 72 73 1

Fe2P2S6 NCs 175 137 2

Ni1-xCoxPS3 NSs 71 77 3

NiP0.62S0.38 54 52.3 4

FeP2 NW arrays 189 67 5

CoSx-Ni3S2/NF 146@20 mA cm-2 141 6

Ni0.9Fe0.1PS3@MXene 196 114 7

NMoNi/SWCNT 130 128 8

CoP/CC 209 129 9

Ni2P 250@20 mA cm-2 100 10

C,N-doped NiPS3 53.2 38.2 11

Few-layer NiPS3 398 48 12

NiCoPS3/C nanosheets 140 60 13

rGO-few-layer FePS3 192 14



Figure S8. Nyquist plots of the NiPS3/Ni, Ni2P/Ni and NiS2/Ni catalysts.

Figure S9. CV curves at a potential range of 0.257 V - 0.355V in 1 M KOH for (a) 
NiPS3/Ni, (b) Ni2P/Ni, and (c) NiS2/Ni. Scan rates of 20, 40, 60, 80, 100, and 120 mV 
s-1 were used. 



The obtained specific capacitance is converted into the ESCA according to the 

specific capacitance value of a flat standard material with a real surface area of 1cm-2. 

Literatures reported that the specific capacitance value of a flat surface is usually in the 

range of 20~60μF•cm-2. In this work, we presume the standard capacitance value of the 

flat surface as 40 μF•cm-2 for the following calculations of ESCA.

According to the ESCA calculation equation of the catalyst: 

𝐸𝑆𝐶𝐴 =
𝐶𝑑𝑙

𝐶𝑠

Where Cdl is the double layer capacitance, and Cs is the standard capacitance value of 
the flat surface. As a result, the ESCAs of NiPS3, Ni2P and NiS2 were calculated to be 
477, 380 and 232 cm-2.
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Due to the exact hydrogen bonding sites are not known, we assume that all the exposed 
atoms including Ni, P and S atoms can serve as the active sites. The total number of 
surface sites were assessed from the unit cells of NiPS3, Ni2P and NiS2.
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Finally, plot of current density can be converted into the TOF plot based on the 
following formula:
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Figure S10. Polarization curves with current density normalized by ESCA for 
NiPS3/Ni, Ni2P/Ni and NiS2/Ni.



Figure S11. SEM image of NiPS3/Ni after HER stability. After 10h HER, the 
vertically-aligned NiPS3 nanosheets on Ni foam still be well preserved, indicating a 
good stability for NiPS3/Ni.

Due to improved electron transfer between NiPS3 nanosheets and Ni foam, the 
catalysis activity on the surface of 2D nanosheets is efficiently enhanced. To confirm 
this, the electrodeposition of Ag nanoparticles on the surface of NiPS3 nanosheets was 
carried out in 0.1 mM AgNO3 solution. A three-electrode set-up was used with the 
NiPS3/Ni as working electrode, Pt wire as counter electrode and saturated calomel 
reference electrode (SCE). After electrodeposited at a constant potential of -0.2 V vs 
SCE for 100s, we observed the Ag nanoparticles were easily deposited on the basal 
surface of NiPS3 nanosheets (Figure S10). This observation further suggested the 2D 
NiPS3 nanosheets directly attachment to the conducting Ni foam can provide efficient 
electron transport along the basal facet of 2D nanosheets, which will facilitate the H 
adsorption during HER process and enhance the intrinsic activity of NiPS3.



Figure S12. (a) SEM image of NiPS3/Ni with Ag particles deposited. (b) EDX spectrum 
from the corresponding elemental of Ni, P, S, and Ag. The Ag nanoparticles were 
mainly deposited on the (001) facets, further suggesting the electrons are readily 
available for the reduction reaction on the basal surface of NiPS3 nanosheets.



Table S2. OER performance of NiPS3/Ni as compared to other state-of-the-art MPS3 
catalysts and transition metal-based catalysts in alkaline electrolyte.

Catalysts Ƞ10 (mV) Tafel slopes
mV dec-1 References

NiPS3/Ni 273 77 This work

NiPS3 440mV @20 mA cm-2 73 1

Fe2P2S6 NCs 288 45.6 2

NiP0.62S0.38 240 46 4

Ni0.7Fe0.3PS3@MXene 282 36.5 7

NiPS3@NiOOH 350 80 15

NiMnOP/NF 189 29.2 16

Co0.8Fe0.2P 270 50 17

Ni-Fe (OxHy) 298 37 18

CoxFePx/C 260 58 19

CoPS 301.8 58 20

NiPS3@Graphene 294 42.6 21

Few-layer NiPS3 nanosheets 300mV @20 mA cm-2 43 22

NiSe@NiOOH/NF 332mV @50 mA cm-2 162 23

NiCoFe phosphide 270 65 24



Figure S13. CV curve of NiPS3/Ni recorded at 2 mV s-1.

Figure S14. Nyquist plots of NiPS3/Ni, Ni2P/Ni and NiS2/Ni electrodes.



Figure S15. CV curves at a potential range of 0.607 V - 0.803V in 1 M KOH for (a) 
NiPS3/Ni, (b) Ni2P/Ni, and (c) NiS2/Ni. Scan rates of 20, 40, 60, 80, 100, 120, 140, 

and 160 mV s-1 were used.

Figure S16. LSV curves after CV scans in the region of (a) 0.75~1.60 V and (b) 
0.75~1.36 V vs. RHE, respectively.



Figure S17. XRD patterns of the NiPS3/Ni before and after OER for 6h.

Figure S18. (a) XPS survey spectrum of NiPS3/Ni before and after OER. (b) XPS 
spectra after OER, highlighting the presence of P and S in NiPS3. (c) A comparison of 
the S 2p core level spectra of NiPS3 before and after the OER.



Figure S19. O1s XPS spectrum for NiPS3 after OER.

Figure S20. The SEM elemental distribution mapping of Ni, P, S, and O elements for 
NiPS3/Ni electrode after OER.
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