Facile construction of hierarchical Bi@BiOBr-Bi₂MoO₆ ternary heterojunction with abundant oxygen vacancies for excellent photocatalytic nitrogen fixation

Meng Lan, Nan Zheng*, Xiaoli Dong*, Xiaolei Ren, Jiaxin Wu, Hongchao Ma,

Xiufang Zhang [a]

School of Light Industry and Chemical Engineering, Dalian Polytechnic University,

#1 Qinggongyuan, Dalian 116034, P R China

*Corresponding author: <u>zhengnan@dlpu.edu.cn</u>, <u>dongxiaoli65@163.com</u>

Tel: +86 411 86323009

Fig. S1. The amount of N_2H_4 produced on Bi@BOB-BMO-2.

DFT calculations

The density functional theory (DFT) calculations were performed with the plane-wave techniques and implemented in the Vienna ab initio simulation package (VASP). ^[S1] The projector augmented wave (PAW) approach was employed to describe the ionelectron interaction. ^[S2] The generalized gradient approximation (GGA) in the form of the Perdew-Burke-Ernzerhof (PBE) was employed to describe the electron exchange and correlation energy. ^[S3] A 520 eV cutoff was adopted for all computations. DFT-D3 method with Beck-Jonson damping was adopted to accurately account for the weak interactions. ^[S4] A Monkhorst-Pack k-point mesh of 6×6×3 was used for BiOBr unit cell, $4 \times 4 \times 1$ for BiOBr(001)-c(2x2), $Bi_2MoO_6(001)$ -p(1x1) and $BiOBr(001)/Bi_2MoO_6(001)$ heterojunction surface models. For surface models, a vacuum space with 15 A was inserted in the z direction to prevent the artificial interaction between periodically repeated images. The adsorption energy (Eads) of N₂ molecules was defined as Eads = $E_{tot} - E_{slab} - E_{N2}$, in which Etot, Eslab and EN2 stand for the total energy of the complex of the catalysts and N₂, the catalysts and isolated N₂ molecule, respectively.

Fig. S2. Schematic illustration of optimized adsorption geometries of N₂ on the (001) surface of (a,b) BOB with OVs, (c,d) BMO and (e,f) Bi@BOB-BMO ((a,c,e) side and (b,d,f) top views).

Fig. S3. O_2 generation along with photocatalytic nitrogen fixation of Bi@BOB-BMO-2.

Photocatalyst	Scavenger	Light source	Ammonia detection	NH ₃ rate	Ref.
			method		
Single-Unit-Cell	No	300 W Xe lamp	ion exchange	48.3 μ mol	[85]
Bi ₃ O ₄ Br Nanosheets		full spectrum	chromatography	g ' h '	
Ultrathin TiO ₂	No	300 W Xe lamp	ion exchange	78.9 µmol	[S6]
nanosheets		200-800 nm	chromatography	$g^{-1} h^{-1}$	
W ₁₈ O ₄₉ by Mo	Na ₂ SO ₃	300W Xe lamp	ion exchange	176.2 µmol	[S7]
doping		full spectrum	chromatography	g-1 h-1	
$Ru/RuO_2/g-C_3N_4$	Methanol	300W Xe lamp	ion exchange	13.3 µmol	[S8]
		full spectrum	chromatography	g-1 h-1	
Ultrathin	No	300 W Xe lamp,	Nessler's	54.70 µmol	[S9]
BiOBr nanosheets		full spectrum	reagent	$g^{-1} h^{-1}$	
BiOBr with oxygen	No	300 W Xe lamp,	Nessler's	104.2 µmol	[S10]
vacancies		$\lambda >$ 420 nm	reagent	$g^{-1} h^{-1}$	
Fe doped BiOBr	No	300 W Xe lamp	Nessler's	382.68 µmol	[S11]
nanosheets		with a 420 nm	reagent	$g^{-1} h^{-1}$	
		cutoff filter			
Bi deposited InVO ₄	No	300 W Xe lamp,	Nessler's	626 µmol	[S12]
nanosheets		full spectrum	reagent	g-1 h-1	
Fe-mediated	No	300 W Xe lamp,	Nessler's	106.5 µmol	[S13]
Bi ₂ MoO ₆		$\lambda >$ 400 nm	reagent	$g^{-1} h^{-1}$	
Bi ₂ MoO ₆ /BiOBr	No	300 W Xe lamp,	Nessler's	81.0 µmol	[S14]
heterojunctions		full spectrum	reagent	$g^{-1} h^{-1}$	
Bi@BiOBr-Bi2MoO6	No	300 W Xe lamp,	ion exchange	167.15 µmol	This
heterojunction		full spectrum	chromatography	$g^{-1} h^{-1}$	work

Table S1. Photocatalytic nitrogen fixation over different photocatalysts under various reaction conditions.

Table S1 displays the photocatalytic nitrogen fixation performance of our $Bi@BiOBr-Bi_2MoO_6$ ternary heterojunction relative to other similar photocatalysts under various reaction conditions. As shown in columns 5 of Table S1, among the numerous bismuth photocatalysts, the nitrogen fixation level of our photocatalyst fall within the mid-range of all other photocatalysts.

References

- S1. G. Kresse, J. Furthmu⁻Iler, Phys. Rev. B, 1996, 54, 11169–11186.
- S2. G. Kresse, D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.
- S3. J. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- S4. S. Grimme, S. Ehrlich, L. Goerigk, J. Chem. Phys., 2011, 32, 1456-1465.
- S5. J. Di, J. Xia, M. F. Chisholm, J. Zhong, C. Chen, X. Cao, F. Dong, Z. Chi, H. Chen, Y. X. Weng, J. Xiong, S.
- Z. Yang, H. Li, Z. Liu and S. Dai, Adv. Mater., 2019, 31, 1807576-1807583.
- S6. Y. Zhao, Y. Zhao, R. Shi, B. Wang, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung and T. Zhang, Adv. Mater.,
- 2019, **31**, 1806482-1806490.
- S7. N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu, C. Gao, W. Ye, Z. Qi, H. Ju, C. Wang, X. Wu, L. Song, J. Zhu and
- Y. Xiong, J. Am. Chem. Soc., 2018, 140, 9434-9443.
- S8. H. Wang, X. Li, Q. Ruan and J. Tang, Nanoscale, 2020, 12, 12329-12335.
- S9. X. Xue, R. Chen, H. Chen, Y. Hu, Q. Ding, Z. Liu, L. Ma, G. Zhu, W. Zhang, Q. Yu, J. Liu, J. Ma and Z. Jin, *Nano. Lett.*, 2018, **18**, 7372-7377.
- S10. H. Li, J. Shang, Z. Ai and L. Zhang, J. Am. Chem. Soc., 2015, 137, 6393-6399.
- S11. Y. Liu, Z. Hu and J. C. Yu, Chem. Mater., 2020, 32, 1488-1494.
- S12. J. Wang, C. Hua, X. Dong, Y. Wang and N. Zheng, Sustain. Energy Fuels, 2020, 4, 1855-1862.
- S13. Q. Meng, C. Lv, J. Sun, W. Hong, W. Xing, L. Qiang, G. Chen and X. Jin, *Appl. Catal.*, B, 2019, 256, 117781.
- S14. X. Xue, R. Chen, C. Yan, Y. Hu, W. Zhang, S. Yang, L. Ma, G. Zhu and Z. Jin, *Nanoscale*, 2019, **11**, 10439-10445.