Electronic Supplementary Material ESI for Sustainable Energy & Fuels

Metal-Organic Framework Mediated Nickel Doped Copper Ferrite for

Superior Lithium Storage

Muhammad K. Majeed,^{†1*} Adil Saleem,^{‡, £1} M. Umar Majeed,[§] Mina Lotfi,[†] M. M. Hussain^ξ and Hongyu Gong^{‡*}

[†] State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P.R. China,

* School of Materials Science and Engineering, Shandong University, Jinan, 250061, P.R. China.

[©] College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen 518060, Guangdong, P. R. China.

[§] Institute of Physics and Electronics, Gomal University, D.I.Khan, 29050, Pakistan,

^E School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, P.R. China,

¹ These authors contributed equally to this work.

Supporting Information

Figure S1: TEM images of Cu_{1-x}Ni_xFe₂O₄@ZIF after ZIF coating.

Figure S2: XRD patterns of (a) $Cu_{1-x}Ni_xFe_2O_4$ particles, (b) $Cu_{1-x}Ni_xFe_2O_4$ @ZIF before postcalcination.

Figure S3: FTIR spectra of $Cu_{1-x}Ni_xFe_2O_4@ZIF$ before post-calcination.

Figure S4: SEM images of as-synthesized $Cu_{1-x}Ni_xFe_2O_4$ particles after pre-calcination.

Figure S5: EDX analysis of $Cu_{1-x}Ni_xFe_2O_4@C$ after post-calcination.

Figure S6: Cyclic voltammetry (CV) of $Cu_{1-x}Ni_xFe_2O_4@C$.

Figure S7: EIS spectra of $Cu_{1-x}Ni_xFe_2O_4@C$ after 50 cycles.

Table R1. Comparison of various anode materials in terms of their electrochemical performances.

Anode	Cycling Stability					
	Initial Discharge capacity [mAh g ⁻¹]	Capacity after n th cycles	No of Cycles	Current rate [mA g ⁻¹]	Columbic efficiency	Ref
CoFe ₂ O ₄ /graphene	1683	501	25	183	53%	2
CuFe ₂ O ₄ -graphene	1605	687	50	100	66%	3
CuFe ₂ O ₄ /rGO	1200	845	25	100	73%	4
NiFe ₂ O ₄ /rGO	1363	1225	100	100	79%	5
NiFe ₂ O ₄ /graphene	1350	812	50	100	67%	6
NiFe ₂ O ₄ @SiO ₂	1460	690	100	100	71%	7
CoFe ₂ O ₄ /C	~1700	600	200	185	~70%	8
NiFe ₂ O ₄ /graphene	1575	407	50	100	72%	9
NiFe ₂ O ₄ /MWCNT	1305	871	25	100	79%	10
Cu _{1-x} Ni _x Fe ₂ O ₄ @C	1428	722	500	500	70%	Our Work

References:

- Junyong W.; Qinglin D.; Mengjiao L.; Kai J.; Jinzhong Z.; Zhigao H.; Junhao C.; Copper ferrites@ reduced graphene oxide anode materials for advanced lithium storage applications, Sci. Rep., 2017, 7, 8903.
- [2] Songmei L.; Bo W.; Jianghua L.; Mei Y.; In situ one-step synthesis of CoFe₂O₄/graphene nanocomposites ashigh-performance anode for lithium-ion batteries, Electrochim. Acta, 2014, 129, 33.
- [3] Yongsheng F.; Qun C.; Mingyang H.; Yunhai W.; Xiaoqiang S.; Hui X.; Xin W.; Copper ferrite-graphene hybrid: A multifunctional heteroarchitecture for photocatalysis and energy storage, Ind. Eng. Chem. Res. 2012, 51, 11700.
- [4] Sumair A S.; Iftikhar H G.; Hashim N.; Shafiqullah M.; Muhammad M.; Improved performance of CuFe₂O₄/rGO nanohybrid as an anode material for lithium-ion batteries prepared via facile one-step method, Current Nanosci. 2019, 15, 420.
- [5] Xiaobin T.; Longze Z.; Xiaoping L.; Xi P.; Jianmin Z.; Xiaochuan D.; Qiuhong L.; High index faceted nickel ferrite nanocrystals encapsulated by graphene with high performance for lithium-ion batteries, Electrochim. Acta, 2017, 257, 99.
- [6] Yongsheng F.; Yunhai W.; Hui X.; Xin W.; Nickel ferritee-graphene hetero-architectures: Toward high-performance anodematerials for lithium-ion batteries, J. Power Sources, 2012, 213, 338.
- [7] Getong Q.; Xin W.; Jianwu W.; Jing L.; Min Z.; A Core-Shell NiFe₂O₄@SiO₂ Structure as a High Performance Anode Material for Lithium-Ion Batteries, *ChemElectroChem*, 2019, 6, 911.
- [8] Yun H J.; Seung D S.; Hyun W S.; Kyung S. P.; Dong W K.; Synthesis of core/shell spinel ferrite/carbon nanoparticles with enhanced cycling stability for lithium ion battery anodes, Nanotech. 2012, 23, 125402.
- [9] Xuefang C.; Ying H.; Kaichaung Z.; Xuansheng F.; S. Li, Self-assembledflower-like NiFe₂O₄ decorated on 2D graphenenanosheets composite and their excellent electrochemical performance as anode materials for LIBs, J. Alloys Comp. 2016, 686, 905.
- [10] Muhammad M.; Rafi U K.; Muhammad M.; Mubasher.; Sumai A. S.; Shafiq U.; NiFe₂O₄ nanoparticles/MWCNTs nanohybrid as anode material for lithium-ion battery, Cer. Intl., 2019, 45, 8486.