Electronic Supporting Information

Pencil Graphite Rods Decorated with Nickel and Nickel-Iron as Low-Cost Oxygen Evolution Reaction Electrodes

Ramón Arcas^{a*}, Yuuki Koshino^b, Elena Mas-Marzá^a, Ryuki Tsuji^b, Hideaki Masutani^b, Eri Miura-Fujiwara^b, Yuichi Haruyama^c, Seiji Nakashima^d, Seigo Ito^{b*} and Francisco Fabregat Santiago^{a*}

- ^{a.} Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló, Spain
- ^{b.} Department of Materials and Synchrotron Radiation Engineering, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan
- Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Ako, Hyogo 678-1205, Japan.
- ^{d.} Department of Electronics and Computer Science, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji, Hyogo 671-2280, Japan.

Corresponding authors: rarcas@uji.es, itou@eng.u-hyogo.ac.jp, fabresan@uji.es

Electrode	C _{dl} @-0.05V (mF∙cm ⁻²)	ECSA	R _s (Ω)	η (η – IR _s) @10 mA·cm ⁻² (mV)	η (η – IR _s) @100 mA·cm ⁻² (mV)
ED@Ni/PGR	134	768	1.8	290 (270)	380 (325)
FA@Ni/PGR	191	1093	2.5	252 (240)	440 (300)
FA@NiFe/PGR	186	1071	2.5	250 (240)	450 (290)
FA@PGR	182	1042	1.9	400 (370)	620 (500)
Glassy Carbon	0.174	1	-	-	-

Table 1. ECSA and overpotential referred to RHE data for the different samples studied. In brackets the value of the interfacial overpotential, i.e. after subtracting the potential drop at series resistance

SEM and EDX analysis

Element	% atomic 73.42			
СК				
ОК	17.47			
Na K	0.33			
Al K	0.7			
Si K	1.06			
Fe K	0.26			
Ni K	6.75			

Figure S1. a) SEM and b) EDX analysis of ED@Ni/PGR

Figure S2. a) SEM and b) EDX analysis of FA@Ni/PGR

Figure S3. a) SEM and b) EDX analysis of FA@NiFe/PGR

a)					b)			
	Sample	Ni ^o	Ni ²⁺	Ni ³⁺		Sample	Fe ²⁺	Fe ³⁺
	ED@Ni/PGR	14.6	66.1	19.2		FA@PGR	88.7	11.3
	FA@Ni/PGR	-	65.9	34.1		FA@NiFe/PGR	70.3	29.7
	FA@NiFe/PGR	-	65.7	34.3				

Figure S4. XPS spectra of (a)Ni2p and (b)O1s in FA@NiFe/PGR, ED@Ni/PGR and FA/PGR electrodes. The dotted line is the measurement data, and the solid line is the smoothed data and fitting data.

Cyclic voltammetry measurements at different pH

Figure S5. FA@NiFe/PGR measured at 1M and 8M KOH

Impedance parameters at the applied overpotential

Figure S6. Results from the IS measurements data as a function of the overpotential for FA@PGR (Black), ED@Ni/PGR (Green), and FA@NiFe/PGR (Blue). (a) Electrode capacitance, (b) transport resistance, (c) Charge transfer resistance, and (d) *J-V* curve obtained during IS measurements

Comparison of impedance parameters with Fe decorated PGR

Figure S7. IS measurements as a function of the interfacial overpotential for FA@PGR (Black), ED@Ni/PGR (Green), and FA@Fe/PGR (Orange). (a) Electrode capacitance, (b) transport resistance, (c) Charge transfer resistance, and (d) *J-V* curve obtained during IS measurements