Supplementary Material

Highly dispersed Ru nanoparticles on a bipyridine-linked covalent organic framework for efficient photocatalytic CO₂ reduction

Ziling Liu,^a Yaqi Huang,^a Shuqing Chang,^a Xiaoli Zhu,^a Yanghe Fu,^{*ab} Rui Ma,^{ab}

Xinqing Lu,^{ab} Fumin Zhang,^{ab} Weidong Zhu*^{ab} and Maohong Fan*^c

^{*a*} Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China ^{*b*} Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua 321004, China

^c Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA.

^{*}Corresponding authors:

E-mail addresses: <u>yhfu@zjnu.cn</u> (Y. Fu), <u>weidongzhu@zjnu.cn</u> (W. Zhu), and <u>mfan@uwyo.edu</u> (M. Fan)

Fig. S1. SEM images of TpBpy (a), 1-Ru@TpBpy (b), 2-Ru@TpBpy (c), and 3-

Ru@TpBpy (d).

Fig. S2. HR-TEM images of the fresh (a) and used (b) 1-Ru@TpBpy after the 5th-run

photocatalytic reaction.

Fig. S3. XRD patterns of the fresh (black) and used 1-Ru@TpBpy after the 5th-run

photocatalytic reaction (red).

Fig. S4. FT-IR spectra of the fresh (black) and the used (red) 1-Ru@TpBpy after the 5th-run photocatalytic reaction.

Fig. S5. Mott-Schottky plots of TpBpy measured at different frequencies.

		Product		
Photocatalyst	Photosensitizer	Yield*	Light source	Ref.
-		(µmol·g ^{−1} cat h ^{−1})	-	
1-Ru@TpBpy	-	НСООН: 172	300 W Xe lamp (420-800 nm)	This work
TpBD- (OCH ₃) ₂	-	HCOOH: 108.3	300 W Xe lamp (420-800 nm)	1
3.0 wt.% Ru/TpPa-1	-	HCOOH: 108.8	300 W Xe lamp (420-800 nm)	2
N ₃ -COF	-	CH ₃ OH: 0.57	500 W Xe lamp (420-800 nm)	3
TTCOF-Zn	-	CO: 2.1	300 W Xe lamp (420-800 nm)	4
COF-318- TiO ₂	-	CO: 69.7	300 W Xe lamp (380-800 nm)	5
CT-COF	-	CO: 102.7	300 W Xe lamp (≥ 420 nm)	6
Ni-TpBpy	[Ru(bpy) ₃]Cl ₂	CO: 324.6	300 W Xe lamp (≥ 420 nm)	7
Re-CTF	[Re(CO)5]Cl	CO: 353.1	300 W Xe lamp (200-1100 nm)	8
Re-COF	[Re(CO) ₅]Cl	CO: 750	225 W Xe lamp (≥ 420 nm)	9
Re-TpBpy	[Re(CO) ₅]Cl	CO: 270.8	200 W Xe lamp (≥ 390 nm)	10
DQTP COF- Co	[Ru(bpy) ₃]Cl ₂	HCOOH: 333.5 CO: 480	300 W Xe lamp (≥ 420 nm)	11
Ni-PCD@TD- COF	[Ru(bpy) ₃]Cl ₂	CO: 95.6	300 W Xe lamp (≥ 420 nm)	12
NH ₂ -MIL- 125(Ti)	-	HCOOH: 16.3	300 W Xe lamp (420-800 nm)	13
NH ₂ -UiO- 66(Zr)	-	HCOOH: 26.4	300 W Xe lamp (420-800 nm)	14
Pt/NH ₂ -MIL- 125(Ti)	-	HCOOH: 25.9	300 W Xe lamp (420-800 nm)	15
PCN-222(Zr)	-	HCOOH: 60	300 W Xe lamp (420-800 nm)	16

Table S1. Summary of the photocatalytic CO₂ reduction performances over COF- and

MOF-based catalysts

References:

 L. Peng, S. Chang, Z. Liu, Y. Fu, R. Ma, X. Lu, F. Zhang, W. Zhu, L. Kong and M. Fan, *Catal. Sci. Technol.*, 2021, **11**, DOI: 10.1039/D0CY02061C.

- [2] K. Guo, X. Zhu, L. Peng, Y. Fu, R. Ma, X. Lu, F. Zhang, W. Zhu and M. Fan, *Chem. Eng. J.*, 2021, **405**, 127011.
- [3] Y. Fu, X. Zhu, L. Huang, X. Zhang, F. Zhang and W. Zhu, *Appl. Catal. B: Environ.*, 2018, 239, 46-51.
- [4] M. Lu, J. Liu, Q. Li, M. Zhang, M. Liu, J. Wang, D. Yuan and Y. Lan, Angew. Chem. Int. Ed., 2019, 58, 12392-12397.
- [5] M, Zhang, M, Lu, Z. Lang, J. Liu, M. Liu, J. Chang, L. Li, L. Shang, M. Wang,
 S. Li and Y. Lan, *Angew. Chem. Int. Ed.*, 2020, **59**, 6500-6506.
- [6] K. Lei, D. Wang, L. Ye, M. Kou, Y. Deng, Z. Ma, L. Wang and Y. Kong, *ChemSusChem*, 2020, 13, 1725-1729.
- [7] W. Zhong, R. Sa, L. Li, Y. He, L. Li, J. Bi, Z. Zhuang, Y. Yu and Z. Zou, J. Am. Chem. Soc., 2019, 141, 7615-7621.
- [8] R. Xu, X. Wang, H. Zhao, H. Lin, Y. Huang and R. Cao, *Catal. Sci. Technol.*, 2018, 8, 2224-2230.
- [9] S. Yang, W. Hu, X. Zhang, P. He, B. Pattengale, C. Liu, M. Cendejas, I. Hermans, X. Zhang, J. Zhang and J. Huang, *J. Am. Chem. Soc.*, 2018, 140, 14614-14618.
- [10] S.-Y. Li, S. Meng, X. Zou, M. El-Roz, I. Telegeev, O. Thili, T. X. Liu and G. Zhu, *Microporous Mesoporous Mater.*, 2019, 285, 195-201.
- [11] M. Lu, Q. Li, J. Liu, F. Zhang, L. Zhang, J. Wang, Z. Kang and Y. Lan, *Appl. Catal. B: Environ.*, 2019, **254**, 624-633.
- [12] H. Zhong, R. Sa, H. Lv, S. Yang, D. Yuan, X. Wang and R. Wang, Adv. Funct. Mater., 2020, 30, 2002654.

- [13] Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu and Z. Li, Angew. Chem. Int. Ed., 2012, 51, 3364-3367.
- [14] D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu and Z. Li, *Chem. Eur. J.*, 2013, **19**, 14279-14285.
- [15] D. Sun, W. Liu, Y. Fu, Z. Fang, F. Sun, X. Fu, Y. Zhang and Z. Li, *Chem. Eur. J.*, 2014, 20, 4780-4788.
- [16] H. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S. Yu and H Jiang, J. Am. Chem. Soc., 2015, 137, 13440-13443.