Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

## **Electronic Supplementary Information**

## Modification of gold nanoparticles with a hole-transferring cocatalyst: A new strategy for plasmonic water splitting under irradiation of visible light

Eri Fudo,<sup>[1]</sup> Atsuhiro Tanaka,<sup>[2, 3]</sup> Shoji Iguchi<sup>[4]</sup> and Hiroshi Kominami\*<sup>[2]</sup>

- [1] Department of Molecular and Material Engineering, Graduate School of Science and Engineering, Kindai University, Kowakae, Higashiosaka, Osaka 577-8502, Japan
- [2] Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, Kowakae, Higashiosaka, Osaka 577-8502, Japan
  Email: hiro@apch.kindai.ac.jp
- [3] Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Honcho, Kawaguchi 332-0012, Japan.
- [4] Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152-8550 Japan

**Supplementary Figures** 



**Figure S1** Size distributions of (a) Au NPs of Au/TiO<sub>2</sub> and (b)-(f)  $Cr(OH)_3/Au$  NPs of  $Cr(OH)_3(y)/Au/TiO_2$ .



Figure S2 TEM images and EDS spectra of (a) Au/TiO<sub>2</sub>, (b)  $Cr(OH)_3(0.10)/Au/TiO_2$  and (c)  $Cr(OH)_3(1.0)/Au/TiO_2$ .



**Figure S3** XPS spectra of Au/TiO<sub>2</sub>,  $Cr(OH)_3/TiO_2$  and  $Cr(OH)_3(y)/Au/TiO_2$  around the C 1s, Ti 2p and O 1s components.



**Figure S4** XPS spectra of TiO<sub>2</sub>, Au/TiO<sub>2</sub>, Cr(OH)<sub>3</sub>/TiO<sub>2</sub>, Cr(OH)<sub>3</sub>(y)/Au/TiO<sub>2</sub> and Cr(OH)<sub>3</sub> around the Cr 2p component.



Figure S5 XRD pattern of Cr(OH)<sub>3</sub>(0.10)/Au/TiO<sub>2</sub>.



**Figure S6** Time courses of the amount of evolved  $O_2$  in an aqueous suspension of  $Cr(OH)_3(1.0)/TiO_2$  and  $TiO_2$  under irradiation of UV light from a high pressure mercury lamp.



**Figure S7** TEM images of Cr(OH)<sub>3</sub>(0.10)/Au/TiO<sub>2</sub> samples: (a) after photocatalytic oxidation of H<sub>2</sub>O to O<sub>2</sub> in the presence of Ag<sup>+</sup> (AgNO<sub>3</sub>) for 3 h and (b) after photocatalytic reduction of O<sub>2</sub> in the presence of Pb<sup>2+</sup> (Pb(NO<sub>3</sub>)<sub>2</sub>) for 5 h.



**Figure S8** XPS spectrum of  $Cr(OH)_3(0.10)/Au/TiO_2$  sample after oxidation of  $Pb^{2+}$  to  $PbO_2$  under irradiation of visible light.



**Figure S9** TEM image and EDS spectra of  $Cr(OH)_3(0.10)/Au/TiO_2$  after photocatalytic reduction of  $O_2$  in the presence of  $Pb^{2+}$  (Pb(NO<sub>3</sub>)<sub>2</sub>) for 5 h.



**Figure S10** Rates of  $H_2$  evolution from methanol over Au/TiO<sub>2</sub> and Cr(OH)<sub>3</sub>(0.10)/Au/TiO<sub>2</sub> under irradiation of UV light from a high pressure mercury lamp.