Supplementary Information

Tuning the Synergistic Effects of MoS₂ and Spinel NiFe₂O₄ Nanostructures for High Performance Energy Storage and Conversion Applications

Pratik V. Shinde¹, Shyam Babu², Shrawan Kr Mishra², Dattatray Late³, Chandra Sekhar Rout^{1*}, and Manoj Kumar Singh^{4*}

¹Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Jakkasandra, Ramanagaram, Bangalore-562112, Karnataka, India.

²School of Materials Science & Technology, Indian Institute of Technology (BHU), Varanasi - 221005, Uttar Pradesh, India.

³Centre for Nanoscience and Nanotechnology, Amity University, Somathne, Mumbai - 410206, Maharashtra, India

⁴Department of Physics under School of Engineering and Technology (SOET), Central University of Haryana (CUH), Mahendergarh-123031, Haryana, India

Email: manojksingh@cuh.ac.in (MKS), r.chandrasekhar@jainuniversity.ac.in (CSR)

Figures

Figure S1: (a) EDS spectrum and (b) Elemental mapping image of the MN5

Figure S2: (a) Low (b) High resolution TEM images and (c) SAED pattern of NFO nanoparticles (d) Low (e) High resolution TEM images and (f) SAED pattern of MS nanoflowers

Figure S3: (a) Typical nitrogen adsorption-desorption isotherms (b) pore size distributions obtained using BJH method

Figure S4: CV curves of (a) NFO (b) MS (c) MN1 (d) MN5 and (e) MN10

Figure S5: GCD curves of (a) NFO (b) MS (c) MN1 (d) MN5 and (e) MN10

Tables

Table ST1: Comparison of the specific capacitance, energy density, power density values ofour $MoS_2/NiFe_2O_4$ nanocomposites-based electrodes with the recent literature values

Material		Elect	rolyte	Capa	acitance	Energy Density		Power Density		Ref.	
MoS ₂ nanoflowers		PVA- Na ₂ SO ₄		90 F/g at 1 A/g		16.4 Wh/kg at 0.2 A/g		1.6 kW/kg at 2 A/g		1	
MoS ₂ nanostructures		1 M KOH		244 F/g at 1 A/g		12.2 Wh/kg at 1 A/g		-		2	
MoS ₂ nanosheets		1 M Li ₂ SO ₄		47.3 F/g at 1 mA		6.56 Wh/kg at 0.5 A/g		250 W/kg at 0.5 A/g		3	
MoS ₂ /corncob-derived activated carbon		1 M Na ₂ SO ₄		38.3 F/g at 1 A/g		7.6 Wh/kg		608 W/kg		4	
MoS ₂ -Ti ₃ C ₂ T _x		1 M F	H ₂ SO ₄ 115.2		F/g at 0.5 A/g	5.1 Wh/kg		298 W/kg		5	
CNT@MoS ₂ /PDDA/PMo ₁₂		1 M F	H_2SO_4	110 F/§	g at 0.5 A/g	15.27	Wh/kg	4782 W/kg		6	
MoS ₂ nanosheets		0.5 TEA	M 14.75		F/g at 0.5 A/g	18.43 Wh/kg at 0.75 A/g		7500 W/kg		7	
AC/MoS ₂		1 M N	a ₂ SO ₄ 1		79 F/g	21 W	/h/kg	225 W/kg		8	
MoS ₂ nanoworms		1 M N	a_2SO_4	138 F/	/g at 1 A/g	12.26	Wh/kg	7.98 kW/kg		9	
	1T MoS ₂		K ₂ SO ₄		80 F/g at 5	5 mV/s 4.19		Wh/kg 225		W/kg	10
	MoS2/PANI/rGO 1 Hollow carbon-MoS2- carbon nanoplates 1 MoS2-NH2/PANI 1 MoS2 /NiFe2O4 (MN5) 1		1 M I	H ₂ SO ₄ 97.8 F/g		t 2 A/g		-		-	11
			1 M Li ₂ SO ₄		248 F/g at 0.1 A/g		78 Wh/kg		3806 W/kg		12
			1 M I	H_2SO_4	58.6 F/g at 0.5 A/g		3.5 Wh/kg		14 kW/kg		13
			1 М Л	Ja SO	246.68 F/g at 0.		at 0.5		1914.02 W/Kg at 0.5 A/g		Thi
				$ a_2SO_4 $ A/g		-	9.47 V at 4	Wh/Kg A/g	179 W/K A	72.10 g at 4 ./g	Woi

Table ST2: $MoS_2/NiFe_2O_4$ nanocomposites show the competitive electrocatalyticperformances for HER compared with the current noble-metal-free catalysts

Material	Electrode	Electrolyte	Overpotential (mV) @ 10 mA/cm ²	Tafel Slope mV/dec	Ref.
SrTiO ₃ @MoS ₂	Nickel Foam	1 М КОН	165	81.41	14
Ni-Fe _x P	Nickel Foam	1 M KOH	119	80	15
MoS ₂ -ZnO-Ni	Nickel Foam	1 M KOH	129	78	16
Cu@Ni-P@a-MoS ₂	Nickel Foil	0.5 M H ₂ SO ₄	186	60.5	17
Co ₃ S ₄ @ MoS ₂ -Ni ₃ S ₂	Nickel Foam	1 M KOH	136	69	18
ZnNi–P	Nickel Foam	1 M KOH	175	129	19
NiS-Ni ₂ P ₂ S ₆	Nickel Foam	1 M KOH	140	72.8	20
MoS ₂ /NiFe ₂ O ₄ (MN5)	Nickel Foam	0.5 M KOH	125	92.3	This Work

Table ST3: Comparison of OER properties of $MoS_2/NiFe_2O_4$ catalysts with relevant catalytic materials

Material	Material Electrode		Overpotential	Tafel Slope mV/dec	Ref.
VOx/NiS	Nickel Foam	1 M KOH	330 mV at 50 mA/cm ²	121	21
Fe-Co ₉ S ₈	Nickel Foam	1 M KOH	270 mV at 10 mA/cm ²	70	22
CuCo-Ni ₃ S ₂	Nickel Foam	1 M KOH	400 mV at 100 mA/cm ²	94.9	23
NiCo ₂ O ₄	Nickel Foam	1 M KOH	271 mV at 10 mA/cm ²	172	24
MoS ₂ /NiCo ₂ O ₄	Nickel Foam	1 M KOH	322 mV at 50 mA/cm ²	113	25
Ni ₃ S ₂ NWs	Nickel Foam	1 М КОН	317 mV at 10 mA/cm ²	53.3	26
MoS ₂ /NiFe ₂ O ₄ (MN5)	Nickel Foam	0.5 M KOH	300 mV at 50 mA/cm²	96.4	This Work

References

1 S. Mishra, P.K. Maurya and A.K. Mishra, Mater Chem. Phys., 255, 123551.

2 M. Manuraj, K.K. Nair, K.N. Unni and R.B. Rakhi, J. Alloys Comp., 2020, 819, 152963.

3 D. Kesavan, V.K. Mariappan, P. Pazhamalai, K. Krishnamoorthy and S.J. Kim, *J. Collo. Interface Sci.*, 2021, **584**, 714-722.

4 F. Wang, J. Ma, K. Zhou and X. Li, Mater Chem. Phys., 2020, 244, 122215.

5 W. Hou, Y. Sun, Y. Zhang, T. Wang, L. Wu, Y. Du and W. Zhong, *J. Alloys Comp.*, 2020, **859**, 157797.

6 P.E. Win, J. Wang, X. Jia, B. Qi, W. Chen, L. He and Y.F. Song, *J. Alloys Comp.*, 2020, **844**, 156194.

7 P. Pazhamalai, K. Krishnamoorthy, S. Manoharan and S.J. Kim, *J. Alloys Comp.*, 2019, 771, 803-809.

8 D.N. Sangeetha and M. Selvakumar, Appl. Surface Sci., 2018, 453, 132-140.

9 A. Sanger, V.K. Malik and R. Chandra, Int. J. Hydrog. Energy, 2018, 43, 11141-11149.

10 B.A. Ali, A.M. Omar, A.S. Khalil and N.K. Allam, *ACS Appl. Mater. Interfaces*, 2019, **11**, 33955-33965.

11 Y. Chao, L. Yang, J. Liu, R. Hu and M. Zhu, Electrochim. Acta, 2018, 270, 387-394.

12 T. Quan, N. Goubard-Bretesché, E. Härk, Z. Kochovski, S. Mei, N. Pinna, M. Ballauff and Y. Lu, *Chem. Eur. J.*, 2019, **25**, 4757-4766.

13 R. Zeng, Z. Li, L. Li, Y. Li, J. Huang, Y. Xiao, K. Yuan and Y. Chen, *ACS Sustain. Chem. Eng.*, 2019, 7, 11540-11549.

14 L. Zhang, J. Yin, K. Wei, B. Li, T. Jiao, Y. Chen, J. Zhou and Q. Peng, *Nanotechnology*, 2020, **31**, 205604.

15 C. Zhang, Y. Xie, H. Deng, C. Zhang, J.W. Su, Y. Dong and J. Lin, *Int. J. Hydrog. Energy*, 2018, **43**, 7299-7306.

16 L. Xu and S. Wang, J. Electroanaly. Chem., 2018, 808, 173-179.

17 B.W. Ahn, T.Y. Kim, S.H. Kim, Y.I. Song and S.J. Suh, Appl. Surf. Sci., 2018, 432, 183-189.

18 A. Muthurasu, G.P. Ojha, M. Lee and H.Y. Kim, *Electrochim. Acta*, 2020, **334**, 135537.

19 M.L. Thi, T.H. Tran, P.H. Anh, H.T. Nhac-Vu and Q.B. Bui, Polyhedron, 2019, 168, 80-87.

20 X. Zhang, S. Zhang, J. Li and E. Wang, J. Mater. Chem. A, 2017, 5, 22131-22136.

21 Y.M. Chai, X.Y. Zhang, J.H. Lin, J.F. Qin, Z.Z. Liu, J.Y. Xie, B.Y. Guo, Z. Yang and B. Dong, *Int. J. Hydrog. Energy*, 2019, 44, 10156-10162.

22 W.K. Gao, J.F. Qin, K. Wang, K.L. Yan, Z.Z. Liu, J.H. Lin, Y.M. Chai, C.G. Liu and B. Dong, *Appl. Surf. Sci.*, 2018, **454**, 46-53.

23 J.F. Qin, M. Yang, S. Hou, B. Dong, T.S. Chen, X. Ma, J.Y. Xie, Y.N. Zhou, J. Nan and Y.M. Chai, *Appl. Surf. Sci.*, 2020, **502**, 144172.

24 Y. Gong, H. Pan, Z. Xu, Z. Yang, Y. Lin and M. Zhang, *Int. J. Hydrog. Energy*, 2018, **43**, 14360-14368.

25 B. Tao, L. Yang, F. Miao, Y. Zang and P.K. Chu, J. Phys. Chem. Solids, 2020, 150, 109842.

26 D. Zhang, J. Li, J. Luo, P. Xu, L. Wei, D. Zhou, W. Xu and D. Yuan, *Nanotechnology*, 2018, **29**, 245402.