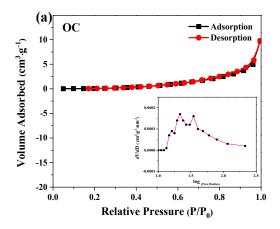
Supporting information

Carbon material derived from polymerization of bio-oil as catalyst for reduction

of nitrobenzene

Qing Xu^a, Guoming Gao^a, Hongli Tian^a, Zhiran Gao^a, Shu Zhang^b, Leilei Xu^c, Xun


Hu^{a,*}

^aSchool of Material Science and Engineering, University of Jinan, Jinan, 250022, P. R. China.

^bJoint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China.

^cCollaborative Innovation Center of the Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, 210044, Nanjing, P. R. China.

*Corresponding author. Tel. /fax: +86–531–89736201; E-mail: Xun.Hu@outlook.com.

Figure S1 The adsorption-desorption isotherm and pore radius distribution of catalysts produced from the polymerization of bio-oil and furfural with HNO₃ oxidation.