Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

Supporting Information

High-purity H₂ production by sorption-enhanced water gas shift on a

K₂CO₃-promoted Cu/MgO-Al₂O₃ difunctional material

Yuanwu Hu, Zhenmin Cheng, Zhiming Zhou*

School of Chemical Engineering

East China University of Science and Technology

Shanghai 200237, China

* Corresponding author: zmzhou@ecust.edu.cn; Tel.: +86-21-64252230; Fax: +86-21-64253528.

Fig. S1. XRD patterns of KMA-0.2-y at 20 degrees of (a) 20-80° and (b) 40-45°.

Fig. S2. Pore size distribution curves of KCMA-x-y.

Fig. S3. CO₂-TPD patterns of KCMA-0.2-y.

Fig. S4. FESEM images of (a) KCMA-0-9, (b) KCMA-0.1-9, (c) KCMA-0.2-9, (d) KCMA-0.3-9, (e) KCMA-0.2-15, (f) KCMA-0.2-21, (g) KCMA-0.2-9(300) and (h) KCMA-0.2-9(420) after 10 adsorption- desorption cycles.

Fig. S5. H₂-TPR profile of KCMA-0.2-9.

Fig. S6. XRD patterns of KCMA-0.2-9, KCMA-0.2-9(300) and KCMA-0.2-9(420).

Fig. S7. CO conversion and product gas composition (y_i , dry and N₂-free basis)

over KCMA-0.2-9(420) at the first SEWGS cycle.

Fig. S8. CO₂ uptake of KCMA-0.2-9 at different CO₂ partial pressures.

(Note: when 1% CO_2/N_2 was used as feedstock, the CO_2 uptake was measured by a Vaisala GMP252 CO_2 probe, as mentioned in the text. In other cases (5%, 15%, 50%, 80% and 100% of CO_2), the CO_2 uptake was measured using a thermogravimetric analyzer (TGA, WRT-3P, Shanghai Precision & Scientific Instrument Co., Ltd.).)