Electronic supporting information

NiN₃-Embedded MoS₂ Monolayer as a Promising Electrocatalyst with High

Activity for Oxygen Evolution Reaction: A Computational Study

Xinyi Li,^a Dongxu Jiao,^a Yanyu Liang,^{b,*} Jingxiang Zhao^{a,*}

^a College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University, Harbin, 150025, P. R. China ^b Jiangsu key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology Nanjing University of Aeronautics and Astronautics

Nanjing 210016, P. R. China

* To whom correspondence should be addressed. Email: liangyy403@126.com (YL) and xjz hmily@163.com or zhaojingxiang@hrbnu.edu.cn (JZ)

Computional Details on Dissolution Potential and Overpotential

To evaluate the stability of NiN₃@MoS₂ monolayer in realistic reaction conditions, such as strong acidic media and working potential, we computed the dissolution potentials (U_{dis} , in V) of Ni in N₃@MoS₂ monolayer at pH=0, which was defined as: $U_{dis} = U_{Ni}^{0} + \left[E_{Ni,bulk} - \left(E_{NiN_3}@MoS_2 - E_{N_3}@MoS_2\right)\right]/ne$, where U_{Ni}^{0} is the standard dissolution potential of Ni in the bulk form (-0.26 V), $N_3@MoS_2$ is the doped MoS₂ monolayer by substituting three S atoms with three N dopants, and *n* is the coefficient for the aqueous dissolution reaction: Ni + 2H⁺ \leftrightarrow Ni²⁺ + H₂, namely, *n* equals to 2. According to this definition, the U_{dis} value of Ni in NiN₃@MoS₂ monolayer is computed to be about 0.30 V.

On the other hand, the overpotential (η) value of OER was obtained according to the following equation: $\eta = U_L - U_0$, where U₀ is the computed equilibrium potential of OER ($U_0 = 1.23$ V), and U_L is the limiting potential of OER on NiN₃@MoS₂ monolayer ($U_L = \Delta G_{max}/e$, V). Since the ΔG_{max} value for OER on NiN₃@MoS₂ monolayer was computed to be 1.68 eV, the computed U_L is [(1.68 eV)/e - 1.23 V) = 0.45 V]. Thus, the negative overpotential ($-\eta$) of OER on NiN₃@MoS₂ monolayer is -0.45 V, which is much smaller than the U_{dis} value of Ni (0.30 V), suggesting that Ni within the NiN₃@MoS₂ framework can survive under the realistic experimental conditions of OER, and thus ensuring their excellent long-term stability.

Table S1. The computed binding energies (E_{bind} , eV), shortest distances between TM and N atoms ($d_{\text{TM-N}}$, Å), charge transfer (Q, |e|) from TM to substrate, height (h, Å) of TM outward from MoS₂ monolayer, and overpotential (η , V) for various TMN_x (x = 1-3) moieties embedded into MoS₂ monolayer.

	Ebind	$d_{ m TM-N}$	Q	h	η
MnN ₃	-5.68	1.91	1.18	0.42	1.59
FeN ₃	-6.17	1.92	1.17	0.42	0.87
CoN ₃	-5.63	1.89	0.98	0.35	0.63
NiN ₃	-5.35	1.92	0.81	0.31	0.45
CuN ₃	-3.38	1.98	0.78	0.45	0.85
RhN ₃	-5.29	2.00	0.38	0.40	1.12
PdN ₃	-3.14	2.17	0.58	0.75	0.65
PtN ₃	-4.19	2.05	0.61	0.89	1.40
MnN ₂	-4.87	1.95	1.10	0.97	1.50
FeN ₂	-4.06	1.85	0.96	0.75	1.45
CoN ₂	-4.99	1.89	0.77	0.81	1.26
NiN ₂	-4.93	1.86	0.64	0.73	0.59
CuN ₂	-3.31	1.94	0.71	0.90	0.89
RhN ₂	-5.13	2.04	0.53	1.45	0.94
PdN ₂	-3.07	2.15	0.42	1.45	0.67
PtN ₂	-4.13	2.11	0.35	1.46	0.91
MnN_1	-3.27	1.90	0.99	0.95	1.28
FeN ₁	-3.97	1.85	0.82	0.78	0.99
CoN ₁	-4.19	1.82	0.68	0.79	0.98
NiN ₁	-4.57	1.81	0.57	0.72	0.72
CuN ₁	-3.13	1.89	0.61	1.06	0.82
RhN ₁	-4.56	1.90	0.41	1.05	0.89
PdN ₁	-2.92	2.02	0.39	1.41	0.84
PtN ₁	-3.85	1.93	0.26	1.60	1.14

catalysts	overpotential		
Co-doped MoS ₂	0.22 V ¹		
Pd ₂ @MoS ₂	0.32 V ²		
NiN ₃ @MoS ₂ in this work	0.45 V		
Pt@T1-vacancy	0.46 V ³		
Co-Ni-P@MoS ₂	$0.68 V^4$		
Ni-doped MoS ₂	$1.08 V^5$		
Fe-doped MoS ₂	1.57 V ⁶		

Table S2. The comparison of overpotential for various reported metal-doped MoS_2 materials.

(a)

(b)

S5

Fig. S1. The computed projected density of states (PDOSs) of (a) TMN_1 , (b) TMN_2 , and (c) TMN_3 moieties embedded into MoS_2 monolayer. The Fermi level was set to zero in red dotted line.

Fig. S2. The scaling relationships for Gibbs adsorption free energy of (a) OOH* vs OH* and (b) O* vs OH* species on $TMN_x@MoS_2$ (x = 1-3) materials.

Fig. S3. The computed free energy profile for OER on $NiN_3@MoS_2$ catalyst with solvent effect.

Fig. S4. The computed free energy profiles for OER on TMN_1 and TMN_2 moieties embedded into MoS_2 monolayer.

Fig. S5. The computed reaction pathway for the diffusion of single Ni atom on $NiN_3@MoS_2$, and the atomic configurations of the involved reactant, transiton state, and product.

Fig. S6. The optimized structures and the corresponding binding energies for (a) Ni_2 and (c) Ni_3 clusters anchored on doped MoS_2 monolayer with three N atoms. Cyan, yellow, purple, and blue balls represent Mo, S, TM, and N atoms, respectively.

Fig. S7. The variations of temperature and energy versus the time for AIMD simulations of $NiN_3@MoS_2$, which is run under 500 K for 10 ps with a time step of 1 fs. Schematic diagrams of the atomic configurations after dynamics simulation (top and side views) are also given.

Fig. S8. Reaction Gibbs free energy of NiN₃@MoS₂ (s) + 1/2 O₂ (g) \rightarrow N₃@MoS₂ (s) + 1/4 Ni₄O₄ (s) on NiN₃/MoS₂ surface versus O₂ pressure under 298 K, light yellow and light blue regions represent the formation of Ni SAC and Ni₄O₄ oxide, respectively.

The formation of Ni oxide on NiN₃@MoS₂ monolayer can be written by: NiN₃@MoS₂ (s) + 1/2 O₂ (g) \rightarrow N₃@MoS₂ (s) + 1/4 Ni₄O₄ (s), in which the pressures of the solid states NiN₃@MoS₂, N₃@MoS₂, and Ni₄O₄ were set as zero. Thus, the partial O₂ pressure for the formation of Ni oxide on NiN₃@MoS₂ monolayer can be determined

as follows:^{3,4} $(P_{O_2})^{\frac{1}{2}} = e^{-\frac{\Delta G}{k_B T}}$, where ΔG is the free energy change for the formation of Ni oxide , $k_{\rm B}$ is the Boltzmann constant, and T is the reaction temperature.

Fig. S9. The computed band structures of (a) pristine MoS_2 monolayer and (b) $NiN_3@MoS_2$ monolayer. The Fermi level was set to zero in dotted red line.

- 1 Q. Xiong, Y. Wang, P. F. Liu, L. R. Zheng, G. Wang, H. G. Yang, P. K. Wong, H. Zhang and H. Zhao, *Adv. Mater.*, 2018, 30, 1801450.
- 2. F. He, Y. Liu, Q. Cai and J. Zhao, New J. Chem., 2020, 44, 16135-16143.
- 3. X. Xu, H. Xu and D. Cheng, Nanoscale, 2019, 11, 20228–20237.
- J. Bao, Y. Zhou, Y. Zhang, X. Sheng, Y.Wang, S. Liang, C. Guo, W. Yang, T. Zhuang and Y. Hu, *J. Mater. Chem. A*, 2020, **8**, 22181-22190.
- 5. Y. Wang, W. Sun, X. Ling, X. Shi, L. Li, Y. Deng, C. An and X. Han, *Chem. A Eur. J.*, 2020, 26, 4097-4103.
- B. Tang, Z. G. Yu, H. L. Seng, N. Zhang, X. Liu, Y.-W. Zhang, W. Yang and H. Gong, *Nanoscale*, 2018, 10, 20113-20119.