Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Metal and Solvent-Dependent Activity of Spinel-Based Catalysts for the Selective Hydrogenation and Rearrangement of Furfural

Abhinav Kumar^a, Atal Shivhare^a, Rajaram Bal^b, and Rajendra Srivastava^a*

^aCatalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar-140001, India

^bNanocatalysis Area Conversion and Catalysis Division, CSIR-Indian Institute of Petroleum, Dehradun-248005, India

*Email: rajendra@iitrpr.ac.in

*Phone: +91-1881-232064

EXPERIMENTAL METHODS

 $Cu(NO_3)_2.3H_2O$ was purchased from Merck India Pvt. Ltd. $Ni(NO_3)_2.6H_2O$ and $Fe(NO_3)_2.9H_2O$ were procured from Sigma Aldrich, Pvt. Ltd., India. Citric acid and $NaBH_4$ were procured from Loba Chemi, Pvt. Ltd., India.

Synthesis of CuFe₂O₄: The CuFe₂O₄ was synthesized by a sol-gel combustion method mentioned in our previous article.¹⁸ In a typical synthesis, Cu(NO₃)₂.3H₂O (5 mmol) and Fe(NO₃)₂.9H₂O (10 mmol) were dissolved in 60 ml deionised water and stirred at 333 K for 2 h. After complete dissolution of the metal precursors, 10 ml aqueous solution of citric acid (15 mmol) was added into the above solution under continuous stirring and the mixing was continued for the next 2 h at 333 K temperature. Following this, water was removed by evaporation at 353 K to get a fluffy sticky solid material which was ground using a mortar and pestle into fine powder. Finally, the obtained powder was dried in oven at 353 K and subsequently calcined in a muffle furnace at 673 K for 2 h at a rate of 2° C/min. After calcination, the obtained black material was designated as CuFe₂O₄.

Synthesis of M/CuFe₂O₄(M = Cu, Ni): The Cu or Ni nanoparticles were decorated on CuFe₂O₄ support by using a NaBH₄ reduction method. The synthesis procedure is as follows: In a 100 mL glass beaker, CuFe₂O₄ (500 mg) was dispersed in 60 mL water-ethanol (1:1) mixture by ultra-sonication for 30 min. Subsequently, 10 mL aqueous solution of a given metal salt of required concentration was added dropwise under sonication and the sonication was continued for another 30 min. To the resulting solution, 20 ml aqueous solution of NaBH₄ (0.4 M) was added slowly under continuous stirring, and the stirring was continued for the next2 h at room temperature. The resulting precipitate was separated by centrifugation and washed several times with water and ethanol, and finally dried in vacuum at 333 K for 12 h. Finally, the obtained materials were designated as Cu(x%)/CuFe₂O₄ and Ni(x%)/CuFe₂O₄, where, 'x' represents the percentage loading of metals on CuFe₂O₄ support.

Materials characterization: The synthesized materials were primarily characterized the by X-Ray diffraction (XRD) technique in 2 θ range of 5-80° on a RIGAKU Mini-Flex diffractometer with Cu ka ($\lambda = 0.154$ nm) radiation. The textural properties such as; the surface area and porosity of all synthesized materials were characterized by the N₂ adsorption-desorption analysis on a BELSORP-mini-X, Microtrac-BEL surface area instrument. Before analysis, all samples were degassed at 423 K for 3 h under flowing He gas. Brunauer-Emmett-

Taller (BET) equation was used to calculate the specific surface area in the relative pressure range of 0.05 to 0.3, and Barrett-Joyner-Halenda (BJH) method was used to determine the pore size distribution. Morphological information of the synthesized materials was obtained from the field emission scanning electron microscopy (FE-SEM) on a Quanta 200 F, M/s FEI, Netherlands instrument. The in-depth morphological and nano-structural information was collected from transmission electron microscope (TEM) (M/s JEOL JSM 2100) instrument operating at 200 kV. The elemental distribution and compositionwerestudiedusing energy dispersive X-ray spectroscopy (EDX) and TEM mapping. The various constituent elements, their chemical states and oxidation states weredetermined by X-Ray photoelectron spectroscopy (XPS) on a Thermofisher Scientific (Nexsa base) instrument. The Cu and Nicontents present in the sampleswerecalculatedby microwave plasma-atomic emission spectroscopy (MP-AES).

Determination of the activation energy: The activation energy (E_a) barriers for both FUR hydrogenation to furfuryl alcohol (FOL) and cyclopentanone (CPO) were calculated over Cu(10%)/CuFe₂O₄ and Ni(10%)/CuFe₂O₄ catalysts, respectively. The FUR to FOL transformation over Cu(10%)/CuFe₂O₄ catalyst was studied at different temperatures, including 373 K, 383 K, and 393 K (Fig. S4a). Similarly, the FUR to CPO transformation over Ni(10%)/CuFe₂O₄ catalyst was studied at three different temperatures, including 383 K, 403 K, and 423 K (Fig. S6a). Since solvent and H₂ were used in excess during these catalytic processes, hence; the first order reaction kinetics was used to calculate the rate constant using the following equation (Eq. 1). A plot of $-\ln (1-x) vs$ time (x represents the FUR concentration at different temperatures. Finally, according to the Arrhenius equation, ln k was plotted against 1/T (T represents temperature) to obtain the activation energy values for both reactions by following equation 2 (Fig. S4c & S6c). From the slope of these plots, calculated values of activation energies for FUR to FOL and FUR to CPO transformations are 57.2 kJ/mol and 35.4 kJ/mol, respectively.

$$-\frac{d[FAL \text{ or } HMF]}{dt} = k[FAL] = \frac{d[FOL \text{ or } DFF]}{dt}$$
(1)
$$-\ln(1-x) = kt + c$$

$$lnk = -\left(\frac{E_a}{RT}\right) + lnA$$
(2)

E. no.	Catalyst	E _a (kJ/mol)	Reference
E _a for FUR to FOL conversion			
1.	Ru _{1.0} Mo _{1.0} P	51	(43)
2.	Ru/ZrO ₂	56.0	(44)
3.	Au/Al2O3	45.0	(45)
4.	CuCrO ₂	46.0	(46)
5.	Cu/SiO ₂	50.2	(47)
6.	Cu-Co@SBA-15	38.5	(48)
7.	CuMgAl	127	(49)
8.	Zr ₁ B ₃ FeO	48.3	(50)
9.	Al-Zr@Fe mixed oxide	45.3	(51)
10.	Cu(10%)/CuFe ₂ O ₄	57.2	This study
E _a for FUR to CPO conversion			
11.	NiFe/SBA-15	104	(52)
12.	Ni(10%)/CuFe2O4	35.4	This study

Table S1. Comparative activation energy (E_a) data for FUR hydrogenation to FOL and CPO.

Fig. S1. SEM images of (a,b) CuFe₂O₄, (c,d) Cu(10%)/CuFe₂O₄, and (e,f) Ni(10%)/CuFe₂O₄.

Fig. S2. Pyridine FT-IR spectra of (a) pyridine adsorbed CuFe₂O₄, CuO, Fe₃O₄, and SBA-15 supports and (b) parent and pyridine adsorbed CuFe₂O₄ support.

Fig. S3. Optimization of (a) reaction temperature, (b) H_2 pressure, (c) catalyst amount, and (d) reaction time for FUR to FOL hydrogenation over Cu(10%)/CuFe₂O₄.

Fig. S4. Kinetic curves for the selective hydrogenation of FUR to FOL (a) relationship between FUR conversion and reaction time, (b) relationship between $-\ln(1-x)$ and reaction time, and (c) relationship between ln k and 1/Temperature (1/T). [Reaction condition: furfural (1 mmol), Cu(10%)CuFe₂O₄ (50 mg), H₂O (10 mL), H₂ (1 MPa).]

Fig. S5. Optimization of (a) reaction temperature, (b) H_2 pressure, (c) catalyst amount, and (d) reaction time for FUR to CPO hydrogenation over Ni(10%)/CuFe₂O₄.

Fig. S6. Kinetic curves for the selective hydrogenation of FUR to FOL (a) relationship between FUR conversion and reaction time, (b) relationship between $-\ln(1-x)$ and reaction time, and (c) relationship between ln k and 1/Temperature (1/T). [Reaction condition: furfural (1 mmol), Ni(10%)CuFe₂O₄ (50 mg), H₂O (10 mL), H₂ (1 MPa).]

Fig. S7. Catalyst recyclability tests for FUR hydrogenation to (a) FOL over $Cu(10\%)/CuFe_2O_4$ and (b) CPO over Ni(10%)/CuFe_2O_4 catalysts.

Fig. S8. Powder XRD patterns of the fresh and spent $Cu(10\%)/CuFe_2O_4$ (a) and $Ni(10\%)/CuFe_2O_4$ (b) catalysts.

Fig. S9. SEM images of the spent (a) $Cu(10\%)CuFe_2O_4$ and (b) $Ni(10\%)/CuFe_2O_4$.