Electronic Supplementary Information (ESI)

ZnO Nanoparticle Confined Stress Amplified All-Fiber Piezoelectric Nanogenerator for Self-powered Healthcare Monitoring

Biswajit Mahanty^{a,b,⊥}, Sujoy Kumar Ghosh^{a,†,⊥}, Santanu Jana^{c,⊥}, Zinnia Mallick^d, Subrata Sarkar^a, Dipankar Mandal^{d*}

^aDepartment of Physics, Jadavpur University, Kolkata 700032, India

^bDepartment of Electronics & Communication Engineering, Ramgarh Engineering College, Murbanda, Ramgarh, Jharkhand 825101, India

^cDepartment of Electronics, Netaji Nagar Day College, Kolkata 700092, India

^dInstitute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India

Corresponding author: dmandal@inst.ac.in, dpkrmandal@gmail.com

 $^{\perp}$ These authors contributed equally to this work.

[†]Present Address:

NEST, Istituto Nanoscienze-CNR, Piazza San Silvestro 12, I-56127 Pisa, Italy

Text S1:

In the finite element method, we solved the following linear mechanical equation S11 that links the stress *T* to the applied force *F* on the BPNG and the Poisson equation S12 that links the electric displacement *D* to the fixed charge density ρ_V ,

$$\nabla T = F, \qquad (S11)$$

$$\mathbf{V}.\mathbf{D} \equiv \boldsymbol{\rho}_{V}, \qquad (S12)$$

The coupling between the structural and electrical domains can be expressed in the form of a connection between the material stress and its permittivity at constant stress or as a coupling between the material strain and its permittivity at constant strain. The equations (S11, S12) are coupled to the piezoelectric equations of strain-charge form (S13, S14) and stress-charge form (S15, S16) that correlate the stress *T* tensor, strain *S*, electric displacement *D* and the electric field *E* using the permittivity ε , elasticity tensor *c* and piezoelectric coupling tensor *e* and *d*.

Strain-Charge form:

The strain-charge form of a piezoelectric material is written as,

$$S = s_E T + d^T E, \qquad (S13)$$
$$D = d T + \varepsilon_0 \varepsilon_{rT} E, \qquad (S14)$$

The material parameters s_E , d, and ε_{rT} correspond to the material compliance, coupling properties, and relative permittivity at constant stress. ε_0 is the permittivity of free space.

Stress-Charge form:

The stress-charge form of the piezoelectric material is written as,

$$T = c_E S + e^T E, (S15)$$

$$D = e.S + \varepsilon_0 \cdot \varepsilon_{rS} \cdot E, \qquad (S16)$$

The material parameters c_E , e, and ε_{rS} correspond to the material stiffness, coupling properties, and relative permittivity at constant strain.

Fig. S1 (a) XRD pattern of the ZnO nanorod powder. (b) HR-TEM image (scale bar~ 10 nm) of a single ZnO nanorod with marked d-spacing of 0.26 nm.

Fig. S2 FE-SEM images of elctrospun nanofibers mat of (a) neat PVDF and (b) PVDF-ZnO composite nanofibers with histogram plot (Gaussian fit) of nanofiber diameter distribution in the inset.

Fig. S3 (a) (i) Topography image (scan area: $20 \ \mu m \times 20 \ \mu m$) and the corresponding enlarged view of the nanofiber used in the PFM study and (ii) line profile of the nanofiber (marked in blue colour line) showing the height difference between the substrate and the fiber at several places are less than 200 nm. The dotted lines are indicating the fibers are placed side-wise and thus also indicating the average fiber diameter is ~ 165 nm (b) (i) Topography image (scan area: $20 \ \mu m \times 20 \ \mu m$) of another nanofiber on the substrate and (ii) height profile of the line scan on the blue colour region again showing fiber diameter less than 200 nm and average diameter is ~ 116 nm. (All the scale bars: 5 \ m).

Fig. S4 Output open circuit voltage (V_{oc}) of neat PVDF nanofiber based all-fiber nanogenerator under 18 kPa of pressure amplitude.

Volume: Electric potential (V)

Fig. S5. Theoretically simulated output voltage under the pressure of 18 kPa using COMSOL multiphysics software. Details of the simulation is provided in ref. 29.

Fig. S6 (a) The square of the measured rectified output voltage at an external load of 10 M Ω for the integration to obtain the instantaneous electric power output. (b) The integration part of the time dependent V_{oc}.

Material	Sensitivity	Reference
	(V/kPa)	
Piezoelectric fiber array	0.027	1
vertically integrated P(VDF-		
TrFE)		
P(VDF-TrFE)/CMOS	0.011	2
transistor		
P(VDF-TrFE) film	2.2×10 ⁻⁵	3
Carbonized	0.324	4
electrospun		
polyacrylonitrile/barium		
titanate		
(PAN-C/BTO)		
nanofiber film		
Aligned P(VDF-	0.121	5
TrFE)/MWCNT composites		
Cellular fluorocarbon	1.54	6
P(VDF-TrFE) thin film	7.5×10 ⁻⁴	7
Eletrospun PVDF	8.2×10-4	8
fabric		
P(VDF-TrFE) nanotube	0.05	9
Electrospun	0.017	10

 Table S1 Mechano-sensitivity of reported piezoelectric based pressure sensors.

PVDF/BaTiO ₃		
nanowire (NW)		
nanocomposite fibers		
Laterally aligned PZT angle-	0.14	11
crystal nanowires		
PVDF-MWCNT-	0.0176	12
OMMT		
PVDF-ZnO nanofibers	0.00312	13
PVDF-ZnO NPs nanofibers	1.0	This work

Table S2 A piezoelectric nanogenerator related data for comparison of device active materials,electrode materials, output performance. (*NM: Not Mentioned).

Electrospun fiber	Electrode	Voltage/Current	Power	Ref.
PVDF	Cu foil	76 mV and 39 nA	577.6 pW/cm ²	14
PVDF/NaNbO ₃	Ag coated	3.4 V, 4.4 μA	¥NM	15
	fabric			
ZnO/PVDF	Ag conductive	8.36 V, 0.17 μA	77.69 nWcm ⁻²	16
	fabric			
PVDF/CH ₃ NH ₃ PbI ₃	Ni- Cu coated	2 V/50 nA	0.8 mW/m ²	17
	fabrics			
PVDF	PEDOT	1 V, 0.15 mA	52 μWcm ⁻³	18
BaTiO ₃ /PZT/CNT/PVDF	carbon filled	6V/ 4 nA	NM	19
	polyethylene			
PVDF-TrFE	conductive	16.2 mV	NM	20
	thread			
PVDF	conductive	8 V/3.76 μA	NM	21
	nanofiber			
	membrane			
	(PVP,			
	PEDOT:PSS,			
	ethyl alcohol,			
	ethylene			
	glycol and			

	ionic liquid)			
PVDF-MoS ₂		12 V, 12nA	0.01 µW/cm ²	22
Random PVDF	Al foil	2.21 V/ 4 µA	0.16 mW/cm ³	23
PVDF/graphene oxide	Cu-Ni plated	7 V	$0.62 \ \mu W/cm^2$	24
	fine knit			
	polyester			
	fabric			
PVDF-ZnO nonorods	Copper foil	85 V/2.2 μA	NM	25
PVDF-ZnO NPs	Ni- Cu coated	18 V	$26.7 \ \mu W/cm^2$	This work
nanofibers	fabrics			

Table S3 A piezoelectric nanogenerator related data for comparison of previously reportedPVDF/ZnO composites. (*NM: Not Mentioned).

Material	d ₃₃	Voltage/Current	Power	References
PVDF-ZnO nanorod	¥NM	8.36V/139.36nA	77.69 nW/cm ²	Polymers 2018, 10, 745
DVDE 7nO		256m2V/456 m A		RSC Adv. 2010 0 10117 10122
nanorod	INIVI	~550111/450 11A	IN IVI	KSC Adv., 2019, 9, 10117–10125
Cowpea-	NM	~10 V/500 nA	NM	Nano Energy, 55, 2019, 516-525
structured				
PVDF/ZnO				
nanofibers				
PVDF-ZnO	NM	1.12 V/ 1.6 l µA	$0.2 \ \mu W \ cm^{-2}$	J Mater Sci 54, 2754–2762 (2019)
nanorods				
PVDF-ZnO	NM	2.5 V/0,1 μA	NM	Phys. Chem. Chem. Phys., 2014,
nanowires				16, 5475—5479
PVDF-ZnO	NM	480 mV	NM	Mater. Res. Express 5 (2018)
nanowires				035057
PVDF-ZnO	14.91±4.39	NM	NM	2018 IEEE 18th International
nanorods	pm/V			Conference on Nanotechnology
				(IEEE-NANO), Materials Science,
				DOI:10.1109/NANO.2018.8626362
PVDF-ZnO	-1.17	1.81 V/0.57µA	0.21 μW/cm ² \$13	Polym Adv Technol. 2017;1–8.

nanorods	pC/N			
PVDF-ZnO	NM	2.4 V/152.2 μA	NM	Nanomater Nanotechnol, 2014,
NWs				4:24
PVDF-	NM	12 V	NM	Polymer Testing, 79, 2019, 106001
BaTiO3_ZnO				
PVDF-ZnO	-32 pm/V	18 V	26.7 μW.cm ⁻²	This work
NPs				
composites				
nanofibers				

Active material	Electrode	Charging time(s), Capacitor value (µF)	Saturation voltage (V), Power stored (µW)	References
P(VDF-	conductive	250, 0.068	35, 0.17	26
TrFE)/BaTiO ₃	fabric			
aligned PVDF	(PANI-PVDF)	60, 1.0	4, 1.3	27
NFs	NFs mats			
P(VDF-TrFE)	Al foils	1800, 47	16, 3.34	28
Pt-PVDF	Cu–Ni	80, 1	3, 0.06	29
	polyester			
	fabric			
PZT-NH ₂ NPs	Al-coated	100, 2.2	4, 0.18	30
	(PI)/PET)			
Hybridization	Conducting	100, 1	8, 0.32	31
sugar-encapsulated	textile			
PVDF				
PVDF/ BaTiO ₃	Al foils	76, 1	1.40, 0.01	32
(P(VDF-TrFE))/	ITO-coated	120, 4.7	1.5, 0.04	33
BaTiO ₃	PET			
Poly(vinyl alcohol)	Ni–Cu	40, 1	0.72, 0.007	34

Table S4 A summary or comparison of device materials, electrode materials, and capacitor

 charging performances of the A-PNG with the reported nanogenerators.

(PVA)/ZnS	polyester			
nanorods	fabric,			
PVDF/ ZnS	Ni–Cu	130, 2.2	10, 0.85	35
nanorods	polyester			
	fabric			
PVDF-niobate-	AgNW	300, 2.2	5, 0.09	36
based				
[P(VDF-TrFE)]	3D PMMA/Au	5, 0.1	3.2, 0.01	37
Ce ³⁺ /	Ni-Cu plated	60, 4.7	0.75, 0.02	38
PVDF/Graphene	polyester			
	fabric			
PVDF-ZnO NPs	Ni–Cu	65, 2.2	4.7, 0.37	This work
nanofibers	polyester			
	fabric			

References

- X. L. Chen, H. M. Tian, X. M. Li, J. Y. Shao, Y. C. Ding, N. L. An and Y. P. Zhou, Nanoscale, 2015, 7, 11536.
- R. S. Dahiya, D. Cattin, A. Adami, C. Collini, L. Barboni, M. Valle, L. Lorenzelli, R. Oboe,
 G. Metta and F. Brunetti, *IEEE Sensors J*, 2011, 11, 3216.
- C. Li, P. –M. Wu, S. Lee, A. Gorton, M. J. Schulz and C. H. Ahn, J. Microelectromech. Syst., 2008, 17, 334.
- G. Zhao, X. Zhang, X. Cui, S. Wang, Z. Liu, L. Deng, A. Qi, X. Qiao, L. Li, C. Pan, Y. Zhang and L. Li, ACS Appl. Mater. Interfaces, 2018, 10, 15855.
- 5. A. Wang, M. Hu, L. Zhou and X. Qiang, Nanomaterials, 2018, 8, 1021.
- B. Wang, C. Liu, Y. Xiao, J. Zhong, W. Li, Y. Cheng, B. Hu, L. Huang and J. Zhou, *Nano Energy*, 2017, **32**, 42.
- 7. T. Sharma, S. –S. Je, B. Gill and J. X. J. Zhang, Sens. Actuators A: Physical, 2012, 177, 87.
- Y. R. Wang, J. M. Zheng, G. Y. Ren, P. H. Zhang, and C. Xu, *Smart Mater. Struct.*, 2011, 20, 045009.
- 9. V. Bhavanasi, D. Y. Kusuma and P. S. Lee, Adv. Energy Mater. 2014, 4, 1400723.
- W. Guo, C. Tan, K. Shi, J. Li, X. –X. Wang, B. Sun, X. Huang, Y. –Z. Long and P. Jiang, *Nanoscale*, 2018, **10**, 17751.
- Q. –L. Zhao, G. –P. He, J. –J. Di, W. –L. Song, Z. –L. Hou, P. –P. Tan, D. –W. Wang and M. –S. Cao, ACS Appl. Mater. Interfaces, 2017, 9, 24696.
- 12. S. M. Hosseini and A. A. Yousefi, Org. Electron., 2017, 50, 121.
- T. Yang, H. Pan, G. Tian, B. Zhang, D. Xiong, Y. Gao, C. Yan, X. Chu, N. Chen, S. Zhong, L. Zhang, W. Deng and W. Yang, *Nano Energy*, 2020, 72, 104706.

- 14. Z. Liu, C. Pan, L. Lin, J. Huang and Z. Ou, Smart Mater. Struct., 2014, 23, 025003.
- W. Zeng, X. M. Tao, S. Chen, S. M. Shang, H. L. W. Chan and S. H. Choy, *Energy Environ*. *Sci.*, 2013, 6, 2631.
- 16. M. Kim, Y. S. Wu, E. C. Kan and J. Fan, *Polymers*, 2018, 10, 745.
- 17. A. Sultana, S. K. Ghosh, M. M. Alam, P. Sadhukhan, K. Roy, M. Xie, C. R. Bowen, S. Sarkar, S. Das, T. R. Middya and D. Mandal, *ACS Appl. Mater. Interfaces*, 2019, **11**, 27279.
- Y. Zhou, J. He, H. Wang, K. Qi, N. Nan, X. You, W. Shao, L. Wang, B. Ding and S. Cui, *Sci. Rep.*, 2017, 7, 12949.
- 19. X. Lu, H. Qu and M. Skorobogatiy, ACS Nano, 2017, 11, 2103.
- E. Yang, Z. Xu, L. K. Chur, A. Behroozfar, M. Baniasadi, S. Moreno, J. Huang, J. Gilligan and M. Minary-Jolandan, ACS Appl. Mater. Interfaces, 2017, 9, 24220.
- M. -H. You, X. -X. Wang, X. Yan, J. Zhang, W.-Z. Song, M. Yu, Z. -Y. Fan, S. Ramakrishna and Y. -Z. Long, *J. Mater. Chem. A*, 2018, 6, 3500.
- K. Maity, B. Mahanty, T. K. Sinha, S. Garain, A. Biswas, S. K. Ghosh, S. Manna, S. K. Ray and D. Mandal, *Energy Technology*, 2017, 5, 234.
- 23. J. Fang, X. Wang and T. Lin, J. Mater. Chem., 2011, 21, 11088.
- 24. K. Roy, S. K. Ghosh, A. Sultana, S. Garain, M. Xie, C. R. Bowen, K. Henkel, D. Schmeißer and D. Mandal, ACS Appl. Nano Mater., 2019, 2, 2013.
- J. Li, S. Chen, W. Liu, R. Fu, S. Tu, Y. Zhao, L. Dong, B.Yan and Y. Gu, J. Phys. Chem. C, 2019, 123, 11378–11387.
- 26. X. Guan, B. Xu and J. Gong, Nano Energy, 2020, 70, 104516.
- K. Maity, S. Garain, K. Henkel, D. Schmeißer and D. Mandal, ACS Appl. Polym. Mater., 2020, 2, 862.

- M. M. Abolhasani, M. Naebe, K. Shirvanimoghaddam, H. Fashandi, H. Khayyam, M. Joordens, A. Pipertzis, S. Anwar, R. Berger, G. Floudas, J. Michels and K. Asadi, *Nano Energy*, 2019, 62, 594.
- 29. S. K. Ghosh and D. Mandal, Nano Energy, 2018, 53, 245.
- E. J. Lee, T. Y. Kim, S. –W. Kim, S. Jeong, Y. Choi and S. Y. Lee, *Energy Environ. Sci.*, 2018, 11, 1425.
- K. Maity,S. Garain, K. Henkel, D. Schmeißer and D. Mandal, ACS Appl. Mater. Interfaces, 2018, 10, 44018.
- 32. K. Shi, B. Sun, X. Huang and P. Jiang, Nano Energy, 2018, 52, 153.
- S. Siddiqui, D. –I. Kim, E. Roh, L. T. Duy, T. Q. Trung, M. T. Nguyen and N. –E. Lee, *Nano Energy*, 2016, **30**, 434.
- 34. A. Sultana, M. M. Alam, A. Biswas, T. R. Middya and D. Mandal, *Transl. Mater. Res.* 3(2016), 045001.
- 35. A. Sultana, M. M. Alam, S. K. Ghosh, T. R. Middya and D. Mandal, *Energy*, 2019, 166, 963.
- C. Zhang, Y. Fan, H. Li, Y. Li, L. Zhang, S. Cao, S. Kuang, Y. Zhao, A. Chen, G. Zhu and Z. L. Wang, *ACS Nano*, 2018, **12**, 4803.
- 37. L. Zhang, J. Gui, Z. Wu, R. Li, Y. Wang, Z. Gong, X. Zhao, C. Sun and S. Guo, *Nano Energy*, 2019, 65, 103924.
- 38. C. Brosseau, P. Queffelec and P. Talbot, J. Appl. Phys., 2001, 89, 4532.