Supporting Information

Electrochemical lithium recovery with lithium iron phosphate: What causes performance degradation and how can we improve the stability?

Lei Wang,^{1,2} Kathleen Frisella,^{1,2} Pattarachai Srimuk,^{1,2} Oliver Janka,³ Guido Kickelbick,³ Volker Presser,^{1,2,*}

- ¹ INM Leibniz Institute for New Materials, D2 2, 66123, Saarbrücken, Germany
- ² Department of Materials Science & Engineering, Saarland University, Campus D2 2, 66123, Saarbrücken, Germany
- ³ Inorganic Solid State Chemistry, Saarland University, Campus C4 1, 66123 Saarbrücken, Germany
- * Corresponding author's email: volker.presser@leibniz-inm.de

Figure S1. Schematic diagram of the principle of symmetric LiFePO₄ electrode during the charging and discharging process

Figure S2. Calibration curves (i.e., the relation of ion concentration and characteristic peak intensity) of lithium (A) and sodium (B).

Figure S3. Raman spectra of delithiated LiFePO₄ recorded at different point on the sample.

Figure S4.Plot of the electrolyte conductivity as a function of the reciprocal of the temperature
 (T^{-1}) in 1 mM (A), 100 mM (B), and 10 mM (C) LiCl, NaCl, MgCl₂ and CaCl₂ electrolyte
and the activation energy of Na⁺, Li⁺, Mg²⁺, and Ca²⁺ at various concentration (D).

Figure S5.The post-mortem X-ray diffractograms of LiFePO4 after 100 cycles in 5 mM LiCl +
50 mM NaCl with N2-flushing, O2-flushing, and without pre-treatment. The diffraction
pattern were normalized to the reflections not associated with the graphite foil.

Figure S6.The X-ray Rietveld refinement fitting of initial LiFePO4 electrode (A) and LiFePO4
electrode after 100 cycles in 5 mM LiCl + 50 mM NaCl with without pre-treatment (B),
N2-flushing (C), and O2-flushing (D).

Figure S7.X-ray Rietveld refinement fitting of the initial LiFePO $_4$ /C electrode (A), and the
LiFePO $_4$ /C electrode after 100 cycles in aqueous 5 mM LiCl + 50 mM NaCl.

Table S1:The concentration of dissolved oxygen after O2-flushing and N2-flushing.

Condition	Concentration of O₂ (ppm)
Initial	8.8
O_2 bubbling for 24 h	12.5
N_2 bubbling for 24 h	4.0

Table S2: Results of the elemental analysis (CHNS).

Sample	Carbon content (mass%)
LiFePO ₄	2.4±0.6
LiFePO ₄ /C	4.4±0.7

Table S3: The formal potential of LiFePO4 in LiCl, NaCl, MgCl2 and CaCl2 with the concentration of
1 M, 100 mM, and 10 mM.

Electrolyte	Average potential E _f (V vs. Ag/AgCl)
1 M LiCl	0.18
1 M NaCl	0.08
1 M MgCl ₂	0.1
1 M CaCl ₂	0.07
100 mM LiCl	0.12
100 mM NaCl	0.09
100 mM MgCl_2	0.10
100 mM CaCl_2	0.03
10 mM LiCl	0.09
10 mM NaCl	0.07
10 mM MgCl_2	0.08
10 mM CaCl ₂	0.06