Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

Supplementary Information

Hierarchical Cu₂S hollow nanowire arrays for highly

efficient hydrogen evolution reaction

Ning Xie,^a Dong-Dong Ma,^{a,*} Yu-Lin Wu,^a Xin-Tao Wu ^{a,c} and

Qi-Long Zhu a,b,c*

^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on

the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350002, China

^b College of Chemistry and Chemical Engineering, Jiangxi Normal University,

Nanchang 330022, China

^c University of Chinese Academy of Sciences, Beijing 100049, China
* E-mail: <u>madong@fjirsm.ac.cn</u> and <u>qlzhu@fjirsm.ac.cn</u>

1. Experimental Section

1.1. Chemical and Materials

Methanol (CH₃OH, A.R.), acetone (C₃H₆O, A.R.), potassium hydroxide (KOH, A.R.), sodium hydroxide (NaOH, A.R.), ethanol (C₂H₅OH, A.R.), thiourea (H₂NCSNH₂, A.R.), thioacetamide (CH₃CSNH₂, A.R.), ammonium persulfate ((NH₄)₂S₂O₈, A.R.), zinc nitrate hexahydrate (Zn(NO₃)₂·6H₂O), A.R.), hydrochloric acid (HCl, A.R.), tetrahydrofuran (THF, 99%) and sodium diethyldithiocarbarnate trihydrate ((C₂H₅)₂NCS₂Na·3H₂O, A.R.) were bought from Sinopharm Chemical Reagent Co., Ltd. Cu Foam were purchased from Suzhou Zhengtai Rong New Materials Co., Ltd. The deionized water (18.2 M Ω cm⁻¹) used in all tests was generated by passing through an ultra-pure purified water system.

1.2. Synthesis of Cu(OH)₂ NAs-CF

Firstly, the CF (2.5 cm \times 2.0 cm) was treated with acetone and diluted hydrochloric acid (2 M), rinsed with ethanol and deionized water in sequence. Secondly, NaOH (40 mmol, 1.60 g) and (NH₄)₂S₂O₈ (2 mmol, 0.46 g) aqueous solution with 30 mL were prepared. To make the reaction more uniform, the pretreated CF was stood in above solution at room temperature for 30 minutes. Finally, the foam materials were taken out and rinsed with deionized water for three times, then dried in a vacuum oven at room temperature for 10 h, noted as Cu(OH)₂ NAs-CF.

1.3. Synthesis of hierarchical Cu₂S HNAs-CF

Firstly, $(C_2H_5)_2NCS_2Na \cdot 3H_2O$ was added to a Teflon-lined stainless autoclave containing 40 mL methanol, and then ultrasonically treated until the solution becomes clear. Secondly, the as-prepared Cu(OH)₂ NAs-CF was threaded by a wire and submerged in the Teflon-lined stainless autoclave at 120 °C for 18 h. Finally, the hierarchical Cu₂S HNAs-CF were taken out and rinsed with deionized water for three times, then dried in a vacuum oven at 40 °C for 10 h.

1.4. Synthesis of compared samples

The compared samples were synthesized with the similar procedures with Cu_2S HNAs-CF, except that thiourea (named as Cu_2S_{TU} NAs-CF) and thioacetamide (named as Cu_2S_{TAA} NAs-CF) were used instead of sodium diethyldithiocarbarnate trihydrate. 1.5. Preparation of PtC/CF

PtC ink with 5.0 mg was added in a 2.0 mL centrifuge tube consisting of H₂O (700 μ L), ethanol (200 μ L) and Nafion (100 μ L). After ultrasonic treated for 30 min, 535 μ L of the homogeneous ink was dropped on the CF with the size of 1.0 × 1.0 cm² and dried naturally at room temperature.

1.6. Preparation of RuO₂/CF

RuO₂/CF was prepared with the similar procedures for PtC/CF.

1.7. Preparation of OMS-RuO₂/CF

The OMS-RuO₂ samples were synthesized according to the previous work of our group. OMS-RuO₂/CF was prepared with the similar procedures for PtC/CF.

1.8. Characterizations

The powder X-ray diffraction (PXRD) measurements were conducted on a Benchtop X-ray diffractometer (Miniflex 600) at 40 kV and 40 mA with Cu Ka radiation to investigate crystal phases of the as-prepared samples. The scanning electron microscopy (SEM) images were carried out on a Zeiss Sigma 300 instrument with the accelerating voltage of 5 kV. The high-resolution transmission electron microscope (HRTEM) and TEM images were performed on the Tecnai F20 instrument with the accelerating voltage of 200 kV. The X-ray photoelectron spectroscopy (XPS) with monochromatized Al K_a Radiation data was recorded on a Thermo Fischer ESCALAB 250Xi X-ray photoelectron spectrometer (E = 1486.2 eV), using the C 1s peak located at Binding energy = 284.8 eV as the reference line.

1.9. Electrocatalytic measurements

The electrochemical measurements were carried out on a CHI 760E

electrochemical workstation (Shanghai CH Instrument) with a typical three-electrode electrochemical cell system in 1.0 M KOH alkaline electrolyte. All samples for testing were cut into 1.0×1.0 cm². As-synthesized Cu₂S NAs-CF, Carbon rod and Saturated Calomel Electrode (SCE) were used as working electrode, counter electrode and reference electrode, respectively. All electrochemical measurements of potentials were calibrated to the following equation: $E_{RHE} = E_{SCE} + 0.245 + 0.059 \times pH$ (V). The LSV+ curves were obtained at a scanning rate of 5 mV with 95% iR-compensation until the CV curves were stable. The ECSAs were conducted by CV tests from 15 mV s⁻¹ to 40 mV s⁻¹ in the non-faradaic region between 0.04 and -0.01 V versus RHE. The Tafel curves were recorded by potential against log current density from the LSV plots. The EIS was obtained in frequency ranging from 0.01 to 10⁵ Hz with an AC amplitude of 5 mV.

Fig. S1 PXRD patterns of Cu₂S NAs-CF with different sulfur sources.

Fig. S2 SEM images of CF (a-b).

Fig. S3 SEM images of Cu(OH)₂ NAs-CF (a-b) and hierarchical Cu₂S HNAs-CF (c-d).

Fig. S4 SEM images of hierarchical Cu₂S HNAs-CF prepared at 90 °C (a-b) and 150 °C (c-d).

Fig. S5 SEM images of hierarchical Cu_2S HNAs-CF prepared with different reaction times of 12 h (a-b) and 24 h (c-d).

Fig. S6 SEM images of hierarchical Cu₂S HNAs-CF prepared with different reactants of 150 mg (a-b) and 100 mg (c-d).

Fig. S7 SEM images of hierarchical Cu_2S HNAs-CF prepared with water as the solvent.

Fig. S8 TEM images of Cu₂S NAs-CF prepared with different sulfur sources: a) thiourea, b) thioacetamide, respectively.

Fig. S9 TEM images of Cu_2S NAs-CF prepared with different sulfur sources: a) thiourea, b) thioacetamide, respectively.

Fig. S10 EDX spectrum of a hierarchical Cu₂S hollow nanowire peeled from Cu₂S HNAs-CF.

Fig. S11 XPS survey spectrum of the hierarchical Cu₂S HNAs-CF.

Fig. S12 Auger Cu LMM spectrum of the hierarchical Cu₂S HNAs-CF.

Fig. S13 (a) LSV curves of hierarchical Cu_2S HNAs-CF prepared with different quantities of reactants, (b, c) the corresponding overpotentials to reach the current densities of 50 and 100 mA cm⁻², respectively.

Fig. S14 (a) LSV curves of hierarchical Cu_2S HNAs-CF prepared with different reaction times, (b, c) the corresponding overpotentials to reach the current densities of 50 and 100 mA cm⁻², respectively.

Fig. S15 (a) LSV curves of hierarchical Cu_2S HNAs-CF prepared at different temperatures, (b, c) the corresponding overpotentials to reach the current densities of 50 and 100 mA cm⁻², respectively.

Fig. S16 (a) LSV curves of hierarchical Cu_2S HNAs-CF prepared in different solvents, (b, c) the corresponding overpotentials to reach the current densities of 50 and 100 mA cm⁻², respectively.

Fig. S17 CV curves at different scan rates for Cu_2S NAs-CF prepared with different sulfur sources: a) thiourea, b) thioacetamide, c) sodium diethyldithiocarbarnate trihydrate, respectively.

Fig. S18 SEM images of hierarchical Cu_2S HNAs-CF after HER test.

Fig. S19 PXRD patterns of hierarchical Cu₂S HNAs-CF after HER test.

Fig. S20 a) Cu $2p_{3/2}$, b) S 2p XPS spectra of hierarchical Cu₂S HNAs-CF after HER test.

Fig. S21 PXRD pattern of OMS-RuO₂.

Fig. S22 SEM images of OMS-RuO₂.

Fig. S23 OER performances of RuO_2/CF and OMS- RuO_2/CF and corresponding overpotentials.

Catalyst	Overpotential (mV)	Electrolyte	Reference
Hierarchical Cu ₂ S	112@50 mA cm ⁻²	1.0 M KOH	This work
HNAs-CF	$125@100 \text{ mA cm}^{-2}$		
PtC/CF	108@50 mA cm ⁻²	1.0 M KOH	This work
	160@100 mA cm ⁻²		
R-MoS2@NF	105@40 mA cm ⁻²	1.0 M KOH	Adv. Mater. 2018 , 30, 1707105
CeO ₂ /Cu ₃ P/NF	148@20 mA cm ⁻²	1.0 M KOH	Nanoscale, 2018 , 10,2213
Ni ₂ P/NiTe ₂	143@100 mA cm ⁻²	1.0 M KOH	Energy Environ. Sci. 2020, 13, 1799–1807
MoS ₂ /NiO ₃ H	$200@217 \text{ mA cm}^{-2}$	1.0 M KOH	Small 2020, 16, 2002212
Hier-NiFe@sCNTs	126@500 mA cm ⁻²	1.0 M KOH	Small 2020, 2002511
Co ₃ S ₄ /EC-MOF/CC	183@100 mA cm ⁻²	1.0 M KOH	Adv. Mater. 2019 , 31, 1806672
Ni ₃ N-VN/NF	218@100 mA cm ⁻²	1.0 M KOH	Adv. Mater. 2019 , 31, 1901174
NFN(Fe ₂ Ni)- MOF/NF	256@250 mA cm ⁻² 293@500 mA cm ⁻²	1.0 M KOH	Adv. Energy Mater. 2018, 8, 1801065
Ni/Mo ₂ C(1:2)- NCNFs/GC	195@100 mA cm ⁻²	1.0 M KOH	<i>Adv. Energy Mater.</i> 2019 , <i>9</i> , 1803185
MoNi ₄ /MoO _{3-X}	52@100 mA cm ⁻²	1.0 M KOH	<i>Adv. Mater.</i> 2017 , <i>29</i> , 1703311
CuCoP	288@50 mA cm ⁻²	1.0 M KOH	ACS sustain. Chem. Eng. 2019 , 7, 3092–3100
Ni-Cu-P alloy	230@100 mA cm ⁻²	1.0 M KOH	ACS Appl. Mater. Interfaces 2018 , 10, 35224–35233
Cu-CoNi-OH/NF	171@100 mA cm ⁻²	1.0 M KOH	<i>J. Electrochem. Soc.</i> 2018 ,
CuO @Co O	$242@50 \text{ m } \text{ am}^{-2}$		165, H866-H871
$CuO_x(\underline{w}CO_3O_4)$	$242(0.50 \text{ mA cm}^2)$ $265(a)100 \text{ mA cm}^2$	1.0 WI KUH	<i>J. Maier. Chem. A</i> 2018 , <i>0</i> , 14431–14439
NiCuP	146@50 mA cm ⁻² 216@100 mA cm ⁻²	1.0 M KOH	Nanoscale, 2017 , <i>9</i> , 4401– 4408

Table S1 Comparison of hierarchical Cu_2S HNAs-CF with some recently reportedrepresentative HER electrocatalysts.

Ni-P/CP	250@100 mA cm ⁻²	1.0 M KOH	Adv. Funct. Mater. 2016,
			20, 4067-4077
WP NAs/CC	$280@100 \text{ mA cm}^{-2}$	1.0 M KOH	ACS Appl. Mater.
			Interfaces 2014, 6, 21874–
			21879
WN NAs/CC	445@100 mA cm ⁻²	1.0 M KOH	Electrochim. Acta 2015,
			154, 345-351
Ni/C NFs	480@100 mA cm ⁻²	2.0 M KOH	Electrochim. Acta 2015,
			159, 1–7
CoP film	$158@100 \text{ mA cm}^{-2}$	1.0 M KOH	Appl. Catal. B. 2015, 154,
			345-351

Sample	Cu ₂ S HNAs-CF	Cu ₂ S _{TU} NAs-CF	Pt/C	Cu ₂ S _{TAA} NAs-CF
Rs (Ω)	2.383	2.807	2.816	2.395
Rct (Ω)	6.387	13.78	3.165	14.21

Table S2 The fitted R_s and R_{ct} of Cu_2S NAs-CF and compared samples.

Catalyst	Cell voltage at 10/20 mA cm ⁻²	Electrolyte	Reference
Cu ₂ S HNAs-CF	1.561 V@10 mA cm ⁻²	1.0 M KOH	This work
OMS-RuO ₂ /CF	1.655 V@20 mA cm ⁻²		
PtC/CF RuO ₂ /CF	$1.623 \text{ V}@10 \text{ mA cm}^{-2}$	1.0 M KOH	This work
	1.731 V@20 mA cm ⁻²		
Co ₁ Mn ₁ CH	1.68 V@10 mA cm ⁻²	1.0 M KOH	J. Am. Chem. Soc. 2017 , 139, 8320–8328
NiCo ₂ O ₄	1.74 V@20 mA cm ⁻²	1.0 M KOH	Angew. Chem. Int. Ed. 2016 , 55, 6290–6294
EG/Ni ₃ Se ₂ /Co ₉ S ₈	$1.62 \text{ V}@10 \text{ mA cm}^{-2}$	1.0 M KOH	Nano letters 2017 , 17, 4202–4209
Ni-Fe-P-B@CFP	1.58 V@10 mA cm ⁻²	1.0 M KOH	Nano Research 2018 , 13, 447–454
Co-MoS ₂	1.58 V@10 mA cm ⁻²	1.0 M KOH	Chem. Commun. 2018 , 54, 3859–3862
Ni ₃ N/CMFs/Ni ₃ N	1.652 V@20 mA cm ⁻²	1.0 M KOH	J. Mater. Chem. A 2017 , 5, 9377–9390
NC-CNT/CoP	1.63 V@10 mA cm ⁻²	1.0 M KOH	J. Mater. Chem. A 2018, 6, 9009–9018
Co ₉ S ₈ /WS ₂ /Ti foil	1.65 V@10 mA cm ⁻²	1.0 M KOH	J. Mater. Chem. A 2017, 5, 23361–23368
NiSe	1.75 V@20 mA cm ⁻²	1.0 M KOH	Angew. Chem. Int. Ed. 2015 , <i>32</i> , 9483
Co ₅ Mo _{1.0} P NSs@NF	1.68 V@10 mA cm ⁻²	1.0 M KOH	Nano Energy 2018 , 45, 448–455
Ni/Mo ₂ C-NCNFs	1.64 V@10 mA cm ⁻²	1.0 M KOH	Adv. Energy Mater. 2019, 9, 1803185
CuCoP	1.8 V@10 mA cm ⁻²	1.0 M KOH	ACS sustain. Chem. Eng.
СоР	1.66 V@20 mA cm ⁻²	1.0 M KOH	2019, 7, 3092–3100 Adv. Funct. Mater. 2015,
NF@NiMoCo	1.56 V@10 mA cm ⁻²	1.0 M KOH	25, 1357–1347 J. Mater. Chem. A 2019 , 7, 2156
Co@N-CS/N- HCP@CC	1.545 V@10 mA cm ⁻²	1.0 M KOH	Adv. Energy Mater. 2019 , 9, 1803918
NiCoP/NF	1.64 V@20 mA cm ⁻²	1.0 M KOH	J. Mater. Chem. A 2017, 5, 14828–14837

Table S3 Comparison of the Cu₂S HNAs-CF|| OMS-RuO₂/CF pair with some recently reported representative electrocatalysts toward overall water splitting.

Ni-Co-P	1.62 V@10 mA cm ⁻²	1.0 M KOH	Energy Environ. Sci. 2018 , 11, 872–880
Co_3S_4 (2) MoS_2	1.58 V@10 mA cm ⁻²	1.0 M KOH	Nano Energy 2018 , 47, 494-502
Ni ₃ S ₂ -NGQDS/NF	1.58 V@10 mA cm ⁻²	1.0 M KOH	Small. 2017, 13, 1700264
Ni _{0.33} Co _{0.67} S ₂ /NiCo ₂ O ₄	1.65 V@10 mA cm ⁻²	1.0 M KOH	<i>Adv. Energy Mater.</i> 2015 , <i>5</i> , 1402031
CoP NFs	1.65 V@10 mA cm ⁻²	1.0 M KOH	ACS Catal. 2020 , 10, 412– 419
NiCuP	1.6 V@10 mA cm ⁻²	1.0 M KOH	Nanoscale, 2017 , 9, 4401– 4408
Cu ₃ N/CuO	1.61 V@10 mA cm ⁻²	1.0 M KOH	ACS Energy Lett. 2019 , 4, 747–754
NiCoP@Cu ₃ P/CF	1.593 V@10 mA cm ⁻²	1.0 M KOH	J. Mater. Chem. A 2018 , 6, 2100–2106
CuCoO-NWs	1.61 V@10 mA cm ⁻²	1.0 M KOH	Adv. Funct. Mater. 2016 , 26, 8555-8561