Self-limiting Lithiation of Vanadium Diboride Nanosheet as Ultrastable Mediator Towards High-sulfur Loading and Long-cycle Lithium Sulfur Batteries

Yuwei Zhao,^{a +} Hao Yin,^{a +} Zhe Zhang,^{b c +} Chongguang Lyu,^a Xuan Zhao,^d Huakai Xu,^b Gang Lu,^a Tianshi Qin,^a Gang Ouyang,^b Chenyang Zha,^{a, e *} Lin Wang^{a *}

^a Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China

^b Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Hunan Normal University, Changsha 410081, China

^c College of Science, Henan University of Technology, Zhengzhou 450001, China

^d Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, 215123, China

^e Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering (IAPME), University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, China

⁺ These authors contributed equally to this article.

Corresponding authors:

iamcyzha@njtech.edu.cn (C. Zha)

chenyangzha@um.edu.mo (C. Zha)

iamlwang@njtech.edu.cn (L. Wang)

Polysulfide host Sulfur loading Specific capacities Cycling stability Reference (mg cm⁻²) $(mAh g^{-1})$ (mAh g⁻¹) 2.0 mg cm⁻² 1280 at 0.5 C 590 after 1000 cycles This work Li₂S₆-VB₂ 2.0 mg cm⁻² 1210 at 1 C 470 after 1000 cycles 2.0 mg cm⁻² 980 at 2 C 340 after 1000 cycles 4.0 mg cm⁻² 624 at 1 C 452 after 500 cycles V₂O₅-CNF 2.0 mg cm⁻² 816 at 3 C 576 after 1000 cycles Small. 2017, 1602539 VN-NBs 1.2 mg cm⁻² 1100 at 1 C 837 after 1000 cycles Nano Lett. 1.2 mg cm⁻² 960 at 2 C 704 after 1000 cycles 2017, 17, 7839-3.3 mg cm⁻² 1143 at 0.5 C 951 after 200 cycles 7846 5.4 mg cm⁻² 1075 at 0.5 C 799 after 200 cycles 6.8 mg cm⁻² 797 at 0.5 C 563 after 200 cycles MoN-VN Not given 766 at 1 C 555 after 500 cycles Angew. Chem. 3.0 mg cm⁻² 467 after 500 cycles 708 at 2 C Int. Ed. 2018, 57, 16703 -16707. PCF/VN 1310.8 at 0.1 C 1052.5 after 250 cycles Adv. Funct. 8.1 mg cm⁻² Mater. 2018, 1706391 VO_{2@}rGO 1.5 mg cm⁻² 1358 at 0.2 C 1049 after 370 cycles J. Mater. Chem. 1.5 mg cm⁻² 1071 at 1 C 751 after 200 cycles А, 2019,7, 1658-4.0 mg cm⁻² 711 at 0.5 C 685 after 20 cycles 1668 VO₂ HSs 930 at 0.1 C 789 after 80 cycles J. Mater. Chem. 0.942 mg 576 at 1 C 440 after 200 cycles 0.942 mg А, 2019,7, 3618-3623 rGO-VS₂(/S-64) 1.15 mg cm⁻² 1194 at 0.2 C 929 after 200 cycles Adv. Energy 1.15 mg cm⁻² 1027 at 1 C 879 after 1200 cycles Mater. 1.15 mg cm⁻² 832 at 2 C 662 after 1200 cycles 2017, 1702337 G-VS₂ 1.0 mg cm⁻² 1270 at 1 C 923 after 150 cycles Adv. Energy 1.0 mg cm⁻² 1185 at 2 C 990 after 100 cycles Mater. 2.0 mg cm⁻² 786 at 1 C 559 after 150 cycles 2018, 1800201 3.5 mg cm⁻² 701 at 1 C 520 after 150 cycles VS4@RGO 3.0 mg cm⁻² 937 at 1 C 601 after 500 cycles ACS Energy 5.0 mg cm⁻² 996 after100 cycles 1116 at 0.2 C Lett. 7.0 mg cm⁻² 1030 at 0.2 C 853 after100 cycles 2020, 5, 4, 10.0 mg cm⁻² 834 at 0.2 C 705 after100 cycles 1177-1185

Table S1. Electrochemical performance of the VB_2 -based Li_2S_6 cell and other similar cathode materials reported in literature.

Fig. S1. Crystal structure and electron location function of VB₂ with B atoms at (001) planes (a-b), V atoms at (001) planes (c-d), B atoms at (100) planes (e-f), V atoms at (100) planes (g-h), and V and B atoms at (101) planes (i-j), respectively. The corresponding ratios (k) of $\Delta C_2/\Delta C_1$ from 1 to 5 mA cm⁻²

Fig. S2. Top and side views of the VB_2 (100) facets (a), and (101) facets (b), respectively. Top and side views of the passivated VB_2 (100) facets with sulfur atoms (c), and (101) facets with sulfur atoms (d), respectively.

Fig. S3. Density functional theory calculations of the PDOS, side and top views of charge density difference of Li_2S_8 (a, b), Li_2S_6 (c, d), Li_2S_2 (e, f) and Li_2S (g, h) molecules adsorbed on the pure VB₂ (101) facets. The blue and pink areas are the regions of trapped and lost charge.

Fig. S4. Density functional theory calculations of the PDOS, side and top views of charge density difference of Li_2S_8 (a, b), Li_2S_6 (c, d), Li_2S_2 (e, f) and Li_2S (g, h) molecules adsorbed on the passivated VB₂ (101) facets. The blue and pink areas are the regions of trapped and lost charge.

Fig. S5. Density functional theory calculations of the PDOS, side and top views of charge density difference of Li_2S_8 (a, b), Li_2S_6 (c, d), Li_2S_2 (e, f) and Li_2S (g, h) molecules adsorbed on the pure VB₂ (100) facets. The blue and pink areas are the regions of trapped and lost charge.

Fig. S6. Density functional theory calculations of the PDOS, side and top views of charge density difference of Li_2S_8 (a, b), Li_2S_6 (c, d), Li_2S_2 (e, f) and Li_2S (g, h) molecules adsorbed on the passivated VB₂ (100) facets. The blue and pink areas are the regions of trapped and lost charge.