Supporting Information

Hysteresis Abated P2-type NaCoO₂ Cathode Reveals Highly Reversible Multiple Phase Transitions for High-Rate Sodium-ion Batteries

Venkata Rami Reddy Boddu¹, Manikandan Palanisamy^{2*}, Lichchhavi Sinha¹, Subhash Chand Yadav¹, Vilas G. Pol^{1,2} and Parasharam M. Shirage^{1*}

¹Discipline of Metallurgy Engineering and Material Science, Indian Institute of Technology - Indore, Indore – 453552, India

²Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA

*Corresponding authors: Manikandan Palanisamy (manikandancy@gmail.com), and Parasharam M. Shirage(pmshirage@iiti.ac.in).

Figure S1

Figure S1. TG analysis for NaCoO₂ precursor.

Sample Details	Unit cell para Calculat	ameters ted	Unit cell from Jo	JCPDS file number	
	a (Å)	c (Å)	a (Å)	c (Å)	
A1	2.8260	10.9230	2.8330	10.8800	00-030-1182
A2	2.8269	10.9323	2.8330	10.8800	00-030-1182
A3	2.8244	10.9135	2.8330	10.8800	00-030-1182
A4	2.8223	10.9124	2.8330	10.8800	00-030-1182
A5	2.8320	10.9731	2.8330	10.8800	00-030-1182
A7	2.8282	10.9506	2.8330	10.8800	00-030-1182

Table S1 Comparative study of crystal system parameters of NaCoO) ₂ .
--	-------------------------

 Table S2 Raman active vibration modes of NaCoO2.

S. No	Active modes	Raman active vibration modes (cm ⁻¹)					
		A1	A2	A3	A4	A5	A7
1	$E_{1g}(O)$	189	187	185	183	187	187
2	$E_{2g}(O)$	466	462	460	462	460	462
3	$E_{2g}(Na)$	511	507	510	508	513	509
4	E _{2g} (Na)	607	607	609	608	607	608
5	$A_{1g}(O)$	666	666	674	671	664	663

 Table S3 Comparative discharge performance of NaCoO2.

Sample	Average discharge capacity after 10 cycles(mAh/g)							Discharge capacity retention at 0.1 C rate
	0.1 C	0.2 C	0.5 C	1 C	2 C	3 C	5 C	(mAh/g)
A1	76	74	71	70	60	53	49	74
A2	90	89	82	73	68	64	52	90
A3	80	73	70	68	60	50	40	78
A4	82	77	72	69	61	50	41	79
A5	83	83	78	70	64	58	44	80
A7	100	99	93	90	83	75	69	98