Supporting Information

Engineering Block Co-polymer Anion Exchange Membrane Domains for Highly Efficient Electrode-Decoupled Redox Flow batteries

Zhongyang Wang^{a,12}, Shrihari Sankarasubramanian^{a,1}, Jason Willey^b, Hongbo Feng^c, Hui Xu^b, Vijay Ramani^{a,z}

^a Center for Solar Energy and Energy Storage and Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, One Brookings Dr., St. Louis, MO

63130, USA

^b Giner Inc., Newton, MA 02466, USA

^c Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA

^z Corresponding Author's email: <u>ramani@wustl.edu</u>

¹ These authors contributed equally.

² Present address: Pritzker School of Molecular Engineering, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637, USA

Figure S1. ¹H NMR spectrum of CMSEBS30. Peaks a and c correspond to the protons on aliphatic backbone. Peaks b correspond to the protons the aromatic ring. The new peak e demonstrated that the chloromethylation reaction occurred in the SEBS. The DF value for CMSEBS30 was calculated by using the following equation:

$$\frac{\frac{Area(e)}{2}}{\frac{Area(b)}{2} + \frac{Area(e)}{2}}{5} \times 0.3$$

The ¹H NMR experiment was performed in chloroform-d with TMS, which was used as an internal standard for calibrating the chemical shift of ¹H.

Figure S2. FTIR spectra of **(a)** SEBS polymer backbone, SEBS following chloromethylation reactions, CM-SEBS-TMA ionomer; **(b)** PTFE reinforcement, r-SEBS-TMA and the same ionomeric membrane separator after the RFB test.

Figure S3. (a) cross-sectional SEM image of SEBS-TMA AEM, **(b)** spot EDAX spectra of SEBS-TMA AEM, **(c)** cross-sectional SEM image of ePTFE reinforcement, **(d)** spot EDAX spectra of ePTFE reinforcement, **(e)** cross-sectional SEM image of r-SEBS-TMA AEM, **(f)** spot EDAX spectra of r-SEBS-TMA AEM.

Figure S4. Stress-strain curve of (a) r-SEBS-TMA and (b) r-SEBS (before TMA functionalization).

Figure S5. Arrhenius plot of $\ln \sigma$ vs. inverse temperature for SEBS-based AEMs.

Figure S6. *Ex-situ*, temperature-controlled membrane cross-over experiments. The cerium electrolyte is on the left-hand chamber and vanadium electrolyte is on the right.

Property	
Thickness (µm)	25.4 ± 3
Gurley air flow (1inch ² at 4.88inch water) (s)	25 ± 2
IPA bubble point (47mm ϕ sample) (KPa)	345 ± 28
Ultimate tensile stress (MPa)	17 ± 3
Elongation at break (%)	339 ± 42
Modulus (MPa)	14 ± 1.4
Ultimate tensile stress (after acid soak) (MPa)	15 ± 3
Elongation at break (after acid soak) (%)	260 ± 50
Modulus (after acid soak) (MPa)	13.6 ± 4
Thermal degradation onset (°C)	500 ± 10
Swelling ratio (%)	No appreciable swelling
Water uptake (%)	No appreciable water uptake after blotting out the film adsorption

 Table S1. Physical properties of ePTFE reinforcement