Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

Supporting information

A self-supporting anode with high activity and long-term stability

for efficient water-splitting

Mingyu Su, Shengli Zhu, Zhenduo Cui, Zhaoyang Li, Shuilin Wu, Hui Jiang* and Yanqin Liang*

School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China

Fig. S1 Appearance of FeNi-LDHs prepared in NiSO₄ solution with varying Ni²⁺ concentration.

Fig. S2 (a) SEM images of FeNi-LDH@sFNF-1. (b) SEM image of FeNi-LDHs@FNF-3.

^{*}Corresponding author: <u>h.jiang@tju.edu.cn</u> (H. Jiang)

^{*}Corresponding author: <u>yqliang@tju.edu.cn</u>(Y. Q. Liang)

Fig. S3 XRD spectra of FeNi foam.

Fig. S4 (a) TEM image of FeNi-LDHs@FNF-1. (b) TEM image of FeNi-LDHs@FNF-3.

Fig. S5 Polarization curves of FeNi-LDHs normalized with catalyst mass.

Fig. S6 Overpotential of FeNi-LDHs grown at different concentrations.

Fig. S7 BET surface area of FeNi-LDHs grown at different concentrations.

Fig. S8 (a, b, c, d) ECSA curves of FeNi-LDHS grown on FeNi foam under different NiSO₄

concentrations.

 Table S1
 Process comparison of different OER catalysts (* is the catalyst developed in this article)

Catalyst	Preparation	Chemicals
FeNi-LDHs-rGO	1. Synthesis of FeNi LDH by hydrothermal	ferrous chloride,
	method.	nickel chloride,
	2. Decarbonisation of FeNi LDH.	urea aqueous,
	3. Synthesis of GO from natural graphite by a	trisodium trate,
	modified Hummers method.	hydrochloric acid,
	4. Embedding graphene oxide into the FeNi	sodium chloride,
	LDH layer by anion exchange.	natural graphite,
	5. Reduction of FeNi-GO LDH to FeNi-rGO	hydrazine hydrate,
	LDH.	ammonium
NiFe-LDHs/CNT		carbon nanotubes
		sulfuric acid
	 Oxidization of carbon nanotubes. Synthesis of NiFe LDH on multi-walled carbon nanotubes by solvothermal method. 	sodium nitrate
		potassium permanganate
		hydrogen peroxide
		N,N-dimethylformamide
		nickel acetate
		ferrous nitrate
N-NiFe-LDHs	Synthesis of N-NiFe LDH on nickel foam in	nickel acetate
	the chemical bath.	hexamethylene tetramine

		iron nitrate
		ethanol
	1 Propagation of magnesium oxide template	magnesium oxide
n-NiFe- LDHs/NGF	1. Treparation of magnesium oxide template	polyethylene glycol
	by surfactant-assisted hydrothermal reaction.	methane/ammonia
	2. Synthesis of NGF via CVD method with the	hydrochloric acid
	as-obtained MgO as templates.	nyuroemorie acid
	3. Synthesis of n-NiFe LDH/NGF via urea-	N-methylpyrrolidone
	assisted precipitation with NGE as the	nickel nitrate
	assisted precipitation with 1001 as the	ferric nitrate
	substrate.	urea
		nickel acetate
NiCo I DHs/Ni	Synthesis of NiCo LDH NiMn LDH and	cobalt acetate
	Synthesis of Meo LDH, Mini LDH and	manganese acetate
NiMn-LDHs/Ni	NiCoMn LDH on nickel foam by	sodium carbonate
NiCoMn-LDHs/Ni	hydrothermal method.	sodium hydroxide
		urea
*FeNi-	Synthesis of FeNi-LDHs on FeNi foam at	
LDHs/FeNi	room temperature.	nickel sulfate

Some calculation formulas involved in the article:

The overpotential is calculated by the following equation:

E (vs. RHE) = E (vs. SCE) + 1.0672 V

 $\eta_{OER} = E (vs. RHE) - 1.23 V$

The ECSA is calculated by the following equation:

$$ECSA = Cdl/Cs(40 \ \mu F \ cm^{-2})$$

The electric quantity of Ni reduction is calculated by the following equation:

$$Q = \frac{\int j \cdot t dt}{m(Ni)}$$

 $\int j \cdot t dt$ is obtained by the integration of the j-t curve (Fig.S4). m(Ni) is obtained from the catalyst mass (By measuring the quality difference of samples before and after chemical corrosion. FeNi-LDHs@FNF-1: 2 mg, FeNi-LDHs@FNF-2: 2 mg, FeNi-LDHs@FNF-3: 3 mg) and XPS element content.