Rational design and solvent-free synthesis of iron-embedded 2D composite materials derived from biomass for efficient oxygen reduction reaction

Shi-Jie Yuan^{a,b}, Qian Sheng^{a,b}, Bin Dong^{a,b*}, and Xiao-Hu Dai^{a,b*}

^aState Key Laboratory of Pollution Control and Resource Reuse, College of

Environmental Science and Engineering, Tongji University, Shanghai, 200092, China

^bShanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092,

China

*Corresponding author. E-mail address: <u>dongbin@tongji.edu.cn (B Dong)</u> <u>daixiaohu@tongji.edu.cn</u> (X.-H. Dai).

Fig. S1. Typical SEM (a and b) images of the as-synthesized CHC.

Fig. S2. The high-resolution N 1s (f) of the as-synthesized CHCFe.

Fig. S3. The micropore (a) and mesopore (b) size distributions of the CHC and CHCFe.

Fig. S4. Typical SEM (a and c) images, TEM (b and d) images, AFM (e and g) images with the corresponding height profiles (f and h), XRD spectra (i), Raman spectra (j), XPS spectra (k), and LSV polarization curves at a rotation rate of 2000 rpm in O₂-saturated 0.1 M KOH solutions (l) of the as-synthesized CHCFe-20 and CHCFe-80.

Fig. S5. Raman spectra (a–e) and XRD spectra (f–j) of the as-synthesized 2DFe/BC derived from sawdust, tea leaves, wheat straw, carrot, and potato, respectively.

Fig. S6 (a–e) Comparisons of the LSV polarization curves, (f-j) LSV polarization curves with different rotation speeds, and (k–o) chronoamperometric responses at a rotation rate of 2000 rpm in O₂-saturated 0.1 M KOH solutions, with the insets showing the CV curves, the K-L plots, and the methanol crossover effect of the assynthesized sawdust-, tea leaf- wheat straw-, carrot-, or potato-derived 2DFe/BCs, respectively.

Fig. S7: (a–e) Comparisons of the LSV polarization curves, (f-j) LSV polarization curves with different rotation speeds, and (k–o) chronoamperometric responses at a rotation rate of 2000 rpm in O₂-saturated 0.5 M H₂SO₄ solutions, with the insets showing the CV curves, the K-L plots, and the methanol crossover effect of the assynthesized sawdust-, tea leaf-, wheat straw-, carrot-, or potato-derived 2DFe/BC, respectively.

Table S1. Properties of the as-synthesized 2DFe/BCs

CHCFe	С	N	0	Fe
surface composition	78.25	1.57	14.64	5.54
bulk composition	72.12	2.27	16.42	7.81

Table S2. The ORR catalytic activities of the as-synthesized biomass derived2DFe/BC in O2-saturated 0.5 M H2SO4 solutions

	coconut	sawdust	tea leaves	wheat	carrot	potato	Pt/C
	husk			straw			
Eonset	0.99	0.99	0.99	0.99	1.02	1.00	0.95
I _{LCD}	5.90	5.93	6.40	5.67	5.49	5.83	5.49
n	3.83-3.85	3.78-3.81	3.74-3.91	3.89-3.96	3.71-3.85	3.90-3.93	

Starting materials	Synthesis process	Catalyst	Characteristics	Electrolyte		Reference
				0.1M KOH	Acidic media	
Biomass,	solvent-free shear mixed with FeCl ₃ ·6H ₂ O, 900	Fe-embedded graphene-like	universal, scalable,	comparable	close activities to	This work
biowaste	°C for 2 h in N ₂	2D composite materials	solvent-free	with Pt/C	Pt/C	
Reed stalk	cut into small pieces, washed with DI water, dried	Si-contained Fe/N/C	KOH activation and	comparable	unknown	Applied Catal.
	in oven at 80 °C for 2 days, pre-carbonized at	catalyst	carbonization, long	with Pt/C		B: Environ.
	800 °C for 1 h under Ar flow, mixed with KOH		treatment times, water-			2018, 237, 85-
	(weight ratio of materials/KOH is 1:2, 1:6 and		consuming steps			93.
	1:10), heated in a homemade copper boat under					
	Ar flow at 700 °C for 1 h, after KOH corrosion					
	served as the carbon host for loading Fe and N in					
	the next step preparation of Si-Fe/N/C catalysts					

Table S3. Comparison of the synthesis catalytic activity of different catalysts

coconut shell	mixed with ZnCl ₂ in ferric trichloride (FeCl ₃)	porous graphene-like	toxic ZnCl ₂ activation and	-	-	J. Mater. Chem.
	solution, stirred at 80 °C for 2 h and dried at 100	nanosheets	carbonization			A 2013,1, 6462-
	$^\circ\mathrm{C}$, annealing in N_2 atmosphere 900 $^\circ\mathrm{C}$ for 1 h,					6470
	treated in 2 M hydrochloric acid thoroughly and					
	dried at 60 °C for 12 h					
taro stems	cut, washed by ethanol and water, dried out	biomass-derived 3D	KOH activation and	comparable	unknown	Appl. Surf. Sci.
	overnight, mixed with potassium hydroxide (mass	nitrogen-doped porous	carbonization, long	with Pt/C		2019, 465, 303-
	ratio = 1:4), heated to 800 °C in Ar for 2 h,	carbon	treatment times, water-			312.
	immersed in 2 M HCl for 12 h, repeatedly washed		consuming steps			
	by distilled water until $pH = 7$, freeze-dried,					
	grinded with melamine (mass ratio = 1:5),					
	pyrolyzed at 800 °C with a flow of argon for 1 h					

water lettuces	washed with DI-water and freeze drying for 24 h,	N-doped porous carbon	pre-carbonized, annealing	comparable	close activities to	Nano Energy
	initial carbonization of WLs under N ₂ atmosphere	nanosheets with three	in NH ₃ atmosphere	with Pt/C	Pt/C	2018, 49, 393-
	at a relatively low temperature of 500 °C, then	dimensional hierarchical				402.
	annealing in NH3 atmosphere at different	porous structures				
	temperatures (700, 800, and 900 °C), followed by					
	washing with an aqueous solution of 2.0 M HCl.					
Medulla stachyuri	cut, immersed into ammonium ferric citrate	iron and nitrogen co-doped	long treatment times,	comparable	unknown	Int. J.Hydrogen
	solution (ethanol/water = $4/5$, v/v), dried for 12 h,	2D porous carbon-flakes	water-consuming steps	with Pt/C		Energ.2019, 44,
	pyrolyzed at 800-1000 °C for 2 h under N ₂ flow,					21726-21737.
	preleached with 0.5 M H_2SO_4 at 80 °C for 24 h,					
	washing to neutral and drying, heat-treated under					
	the same conditions for 1 h for a second time					

Biomass,	Glucose, [ZnCO ₃] ₂ ·[Zn(OH) ₂] ₃ and urea were	hierarchically porous	universal approach, basic	comparable	unknown	Nano Energy
biowaste	mixed in mortar and ground, heated at 900 °C for	carbon materials with	zinc carbonate as solo	with Pt/C		2019, 62, 628-
	2 h in N ₂ flow, immersed in 2 mol L ⁻¹ HCl	homogeneous fluffy	porogen with two pore-			637.
	solution for 18 h, washed by high purity water	morphology	creating mechanisms			
	repeatedly until pH = 7, dried at 40 °C for 24 h.					
Biomass,	Glucose, urea, $Mg_5(OH)_2(CO_3)_4$ and $ZnCl_2$ are	biomass-derived	toxic ZnCl ₂ activation and	comparable	unknown	Energy Environ.
biowaste	mixed and ground, pyrolyzed at 900 °C for 2 h	hierarchically porous	carbonization, dual-	with Pt/C		Sci. 2019, 12,
	under N_2 atmosphere, immersed in 2.0 M HCl	heteroatom-doped carbon	templating strategy			648-655.
	solution for 18 h, washed with water several	materials				
	times and dried at 40 °C overnight.					
Guanine	pre-carbonized at 550 °C for 2 h, mixing with	pyridinic-N dominated	pre-carbonized, toxic	comparable	close activities to	Carbon 2020,
	ZnCl ₂ , activation at 600 °C for 2 h and further	porous carbon nanosheets	ZnCl ₂ activation and	with Pt/C	Pt/C	156, 179-186.
	carbonization at 1000 °C for 4 h in N_2 atmosphere		carbonization			

Guanine,	dispersed in water, kept at 180 °C for 8 h,	2D morphology of	long treatment times,	comparable	lower than Pt/C	J. Mater. Chem.
fructose, sodium	collected by filtration, washed several times and	crystalline carbons	water-consuming steps	with Pt/C		A 2017, 5,
oleate, P123	dried at 60 °C under vacuum for 8 h, further					23481-23488.
	carbonization at 1000 °C for 2 h in a N_2					
	atmosphere					
Guanine, ferric	guanine and ferric nitrate nonahydrate dispersed	nitrogen-doped carbon	stirred to dry at room and	comparable	unknown	J. Power Source
nitrate	into deionized water and stirred to dry at room	nanosheets containing	pyrolyzed at 1000 °C	with Pt/C		2019, 412, 125-
nonahydrate	temperature, and pyrolyzed at 1000 °C under	highly dispersed single iron				133.
	continuous N ₂ flow	atoms				
ginkgo leaves	heated at 60 °C, ground into uniform powde,	nitrogen-doped porous	annealed under Ar flow,	comparable	unknown	J. Power Sources
	annealed in a tube furnace at 1100 °C for 5 h	carbon nanosheets	and then thermally treated	with Pt/C		2014, 272, 8-15.
	under Ar flow, washed in 3 M HCl, distilled		under flowing NH ₃			
	water, and ethanol, and then warmed at 60 °C,					

	further thermally treated under flowing NH_3 (80					
	sccm) at 1000 °C for 1 h					
Typha orientalis	hydrothermal 180 °C for 12 h, immersed into	N-doped carbon nanosheets	hydrothermal 12 h and	comparable	lower than Pt/C	Energy Environ.
	distilled water several times, freeze drying for 24		annealed in NH ₃	with Pt/C		Sci. 2014,7,
	h, annealed in NH_3 atmosphere at 800 °C for 2 h					4095-4103.
Guanine	Guanine was mixed with aqueous SiO ₂	graphene-like carbon	sonication and stirring	comparable	lower than Pt/C	ChemNanoMat
	nanoparticles, sonication and continuing stirring	framework composed of	until completely drying,	with Pt/C		2019, 5, 682-
	until completely drying, carbonization at 1000 °C	three-dimensionally	etched by 10% HF			689.
	for 4 h in N_2 atmosphere, etched by 10% HF	interconnected nanosheets	solution twice			
	solution twice, drying overnight at 100 °C					
Prussian blue	750-1050 °C for 2 h, HCl washed for overnight	Fe/Fe ₃ C nanoparticle	long treatment times,	comparable	unknown	Green Chem.
	followed by washing with Millipore	encapsulated N-doped	water-consuming steps	with Pt/C		2016, 18, 427-
	water/ethanol several times and dried at 80 0C	graphitic				432.

carbon nanotube,	modified Hummers' method, 900 °C annealed in	carbon nanotube–graphene	long treatment times,	comparable	comparable with	Nature
graphene	2 torr of 10% NH ₃ /argon at for 30 min	complexes	water-consuming steps	with Pt/C	Pt/C	Nanotech. 2012,
						7, 394-400.
La(NO ₃) ₃ ·6H ₂ O,	Synthesis of La _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O ₃ catalyst,	La _{0.5} Sr _{0.5} Co _{0.8} Fe _{0.2} O ₃	long treatment times,	comparable	unknown	Nano Energy
Sr(NO ₃) ₂ ,	Synthesis of N-doped reduced graphene oxide	combined with N-doped	water-consuming steps	with Pt/C		2014, 10, 192–
Co(NO ₃) ₂ ·6H ₂ O		reduced graphene oxide				200
and						
Fe(NO ₃) ₃ ·9H ₂ O						
in H ₂ O, C ₂ H ₅ OH						
and DMF, PVP,						
graphene oxide						