Supporting Information

Highly Efficient Proton-Assisted Photocatalytic CO2 Reduction over 3-

Mercaptopropionic Acid-Capped CdS Quantum Dots

Duc-Trung Nguyen, Anis Chouat, and Trong-On Do*

Department of Chemical Engineering, Laval University, Québec, G1V 0A6, Canada

*Corresponding author

Email address: trong-on.do@gch.ulaval.ca

Magnetic Stirrer

Fig. S1. Schematic illustration of the photoreactor for photocatalytic CO₂ reduction [1]

Fig. S2. Pictorial images of aqueous CdS-xA QDs. Excepting that CdS-0A is insoluble in water, other CdS-xA QDs (x = 1-4) exhibit good solubility and stability in water

Fig. S3. The TEM images of CdS-1A quantum dots (a-b) and CdS-0A quantum dots (c-d)

Fig. S4. The XRD spectra of CdS-0A and CdS-1A quantum dot (* indicate the presence of

chracteristic Cd(OH)₂ peaks)

Fig. S5. The survey XPS spectra of CdS-1A quantum dot

26.78

20.87

17.11

11.94

23.30

Fig. S6. The optimization of CdS-0.5A concentration for the photocatalytic CO₂ reduction

Fig. S7. The optimization of CdS-1A concentration for the photocatalytic CO₂ reduction

Fig. S8. The optimization of CdS-2A concentration for the photocatalytic CO₂ reduction

Entry	\mathbf{H}_2	СО
1	No	No
2	No	No
3	No	No
4	H ₂ (trace)	No

Table S1. Control experiments for the photocatalytic CO_2 reduction

 1 without photocatalyst; 2 in the dark; 3 without TEA; 4 using Ar instead of CO₂

Table S2. The comparison in the Apparent Quantum Yield of CdS-1A in the photocatalytic CO_2

Catalyst	Light source	Co-catalyst	Sacrificial agent	AQE (%)	Ref.
CdS-1A	150 W Xe lamp	No	TEA	4.17% (420 nm) 0.32% (460 nm)	This work
N-doped graphene/CdS hollow sphere	350 W Xe lamp,	No	H ₂ O	0.9% (420 nm)	[2]
tetra-coordinated Co(II) modified CdS	300W Xe lamp	_	Na ₂ SO ₃	2.2% (420 nm)	[3]
Au ₍₂₅)@CdS HMCHPs	300W Xe lamp	Co(bpy) ₃ ²⁺	TEOA	0.61% (420 nm)	[4]
CdS-WO ₃	300W Xe lamp	No	No	0.4% (420 nm)	[5]
Co-ZIF- 9/[Ru(bpy) ₃]Cl ₂ .6 H ₂ O	500W Xe lamp	Co-ZIF-9	TEOA	1.48% (420 nm)	[6]
rGO-MoS ₂	300 W Xe lamp, AM 1.5 G, 1 Sun	No	H ₂ O	0.3% (523 nm)	[7]
Co-ZIF-9/CdS	300W Xe lamp	Co-ZIF-9	TEOA	1.93 % (420 nm)	[8]
g-C ₃ N ₄ /Co-ZIF-9	Xe lamp (intensity not available)	Co-ZIF-9	TEOA	0.9% (420 nm)	[9]

reduction with the reported photocatalyst in the literature

Ru complex/C ₃ N ₄	400W Hg lamp	Ru complex	TEOA	5.7 % (400 nm)	[10]
Carbon layer coated Cu ₂ O	300W Xe lamp	No	H ₂ O	2.07 % (400 nm)	[11]
Polymeric carbon nitride/ZnIn ₂ S ₄	300W Xe lamp	Co(bpy) ₃ ²⁺	TEOA	2.4% (420 nm)	[12]
Ni metal-organic framework (MOF) monolayers	5W white LED light	-	TEOA	2.2 % (420 nm)	[13]
Cu ₂ O/WO ₃ -001	400W Xe lamp	-	H ₂ O	0.503 % (420 nm)	[14]
Triazine-based conjugated microporous polymers	300W Xe lamp	Co(bpy) ₃ ²⁺	TEOA	1.75 % (405 nm)	[15]
Mixed MPA,MUA- capped CdS QDs	LED (λ = 400 nm)	No	TEOA	HCOOH: 23.2 % (400 nm) CO: 0.4 % (400 nm) CH4: 0.2 % (400 nm)	[16]

Fig. S9. The FTIR spectra of CdS-1A QDs before (line a) and after 4 cycles test (line b)

Fig. S10. (a) The photocatalytic activity of CdS-1A after ligand stripping by treating CdS-1A with HCl 1M at pH=4 at different durations of time (0, 16, and 48 hours), and (b) their corresponding FTIR spectra

Fig. S11. The comparison between the photocatalytic activity of CdS QDs synthesized by the aqueous synthesis (CdS-1A) and hot-injection method (CdS-1LE)

Fig. S12. (a) The color of CdS-1A QDs in 9/1 v/v DMSO/TEA at three different intervals during the photocatalytic CO₂ reduction, and (b) its corresponding PL spectra (*Interval 1*: before solar-light irradiation, no CO₂ purging; *Interval 2*: solar-light irradiation for 2 hours, with saturated CO₂ solution; *Interval 3*: solar-light irradiation off, with desaturated CO₂ solution).

References

[1] V.N. Gopalakrishnan, D.-T. Nguyen, J. Becerra, M. Sakar, J.M.E. Ahad, J.J. Jautzy, L.M. Mindorff, F. Béland, T.-O. Do, Manifestation of an Enhanced Photoreduction of CO₂ to CO over the In Situ Synthesized rGO–Covalent Organic Framework under Visible Light Irradiation, ACS Appl. Energy Mater., (2021).

[2] C. Bie, B. Zhu, F. Xu, L. Zhang, J. Yu, In Situ Grown Monolayer N-Doped Graphene on CdS Hollow Spheres with Seamless Contact for Photocatalytic CO₂ Reduction, Adv. Mater., 31 (2019) 1902868.

[3] G. Zhao, W. Zhou, Y. Sun, X. Wang, H. Liu, X. Meng, K. Chang, J. Ye, Efficient Photocatalytic CO₂ Reduction over Co(II) Species Modified CdS in Aqueous Solution, Appl. Catal., B, 226 (2018) 252-257.

[4] P. Zhang, S. Wang, B.Y. Guan, X.W. Lou, Fabrication of CdS Hierarchical Multi-Cavity Hollow Particles for Efficient Visible Light CO₂ Reduction, Energy Environ. Sci., 12 (2019) 164-168.

[5] J. Jin, J. Yu, D. Guo, C. Cui, W. Ho, A Hierarchical Z-Scheme CdS–WO₃ Photocatalyst with Enhanced CO₂ Reduction Activity, Small, 11 (2015) 5262-5271.

[6] S. Wang, W. Yao, J. Lin, Z. Ding, X. Wang, Cobalt Imidazolate Metal–Organic Frameworks Photosplit CO₂ under Mild Reaction Conditions, Angew. Chem., Int. Ed., 53 (2014) 1034-1038.

[7] N. Kumar, S. Kumar, R. Gusain, N. Manyala, S. Eslava, S.S. Ray, Polypyrrole-Promoted rGO-MoS₂ Nanocomposites for Enhanced Photocatalytic Conversion of CO₂ and H₂O to CO, CH₄, and H₂ Products, ACS Appl. Energy Mater., 3 (2020) 9897-9909.

[8] S. Wang, X. Wang, Photocatalytic CO₂ Reduction by CdS Promoted with a Zeolitic Imidazolate Framework, Appl. Catal., B, 162 (2015) 494-500.

[9] S. Wang, J. Lin, X. Wang, Semiconductor-Redox Catalysis Promoted by Metal-Organic Frameworks for CO₂ Reduction, Phys. Chem. Chem. Phys., 16 (2014) 14656-14660.

[10] R. Kuriki, K. Sekizawa, O. Ishitani, K. Maeda, Visible-Light-Driven CO₂ Reduction with Carbon Nitride: Enhancing the Activity of Ruthenium Catalysts, Angew. Chem., Int. Ed., 54 (2015) 2406-2409.

[11] L. Yu, G. Li, X. Zhang, X. Ba, G. Shi, Y. Li, P.K. Wong, J.C. Yu, Y. Yu, Enhanced Activity and Stability of Carbon-Decorated Cuprous Oxide Mesoporous Nanorods for CO₂ Reduction in Artificial Photosynthesis, ACS Catal., 6 (2016) 6444-6454.

[12] M. Zhou, S. Wang, P. Yang, Z. Luo, R. Yuan, A.M. Asiri, M. Wakeel, X. Wang, Layered Heterostructures of Ultrathin Polymeric Carbon Nitride and ZnIn₂S₄ Nanosheets for Photocatalytic CO₂ Reduction, Chem. Eur. J., 24 (2018) 18529-18534.

[13] B. Han, X. Ou, Z. Deng, Y. Song, C. Tian, H. Deng, Y.-J. Xu, Z. Lin, Nickel Metal-Organic Framework Monolayers for Photoreduction of Diluted CO₂: Metal-Node-Dependent Activity and Selectivity, Angew. Chem., Int. Ed., 57 (2018) 16811-16815.

[14] W. Shi, X. Guo, C. Cui, K. Jiang, Z. Li, L. Qu, J.-C. Wang, Controllable Synthesis of Cu₂O Decorated WO₃ Nanosheets with Dominant (0 0 1) Facets for Photocatalytic CO₂ Reduction under Visible-Light Irradiation, Appl. Catal., B, 243 (2019) 236-242.

[15] C. Yang, W. Huang, L.C. da Silva, K.A.I. Zhang, X. Wang, Functional Conjugated Polymers for CO₂ Reduction Using Visible Light, Chem. Eur. J., 24 (2018) 17454-17458.

[16] H.-Y. Wang, R. Hu, Y.-J. Lei, Z.-Y. Jia, G.-L. Hu, C.-B. Li, Q. Gu, Highly Efficient and Selective Photocatalytic CO₂ Reduction Based on Water-soluble CdS QDs Modified by the Mixed Ligands in One Pot, Catalysis Science & Technology, 10 (2020) 2821-2829.