Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

Efficient utilization of crude bio-oil: synthesizing of nitrogen-doped hierarchically porous

carbons as electrocatalysts for oxygen reduction reaction

Xu Jiahuan, Xue Beichen, Liu Chao, Xia Chunlin, Li Ming*, Xiao Rui**

Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China

- * Corresponding author
- ** Corresponding author

E-mail: 101101403@seu.edu.cn (M. Li); ruixiao@seu.edu.cn (R. Xiao).

Fig. S1 Schematic diagram of the fixed bed for N-oil production

Fig. S2 (a) High-resolution Zn2p spectrum (b) High-resolution Mg1s spectrum (c) High-resolution K2p spectrum of AY₁Zn₁-800. The content of Zn, Mg, K were 0.33, 0.69 and 0.24 at%, respectively.

Fig. S3 N₂ adsorption-desorption isotherms of (a) AY₁Zn₀-800; (b) AY₁K₁-800 and (c) AY₁Mg₁-800. The insets are corresponding pore size distribution curves.

Table S1 Parameters from N2 adsorption-desorption analysis

S	SBET	S _{micro} ^[a]	Smeso	Vtotal ^[b]	V _{micro} ^[a]	V _{meso}	V _{meso} /	V _{meso} /V _{total}	Daverage ^[c]	Porosity ^[d]
Sample	$m^2 g^{-1}$	$m^2 g^{-1}$	$m^2 g^{-1}$	cm ³ g ⁻¹	cm ³ g ⁻¹	cm ³ g ⁻¹	Vmicro	% n	nm	%
AY ₁ Zn ₀ -800	194.28	155.93	38.35	0.110	0.082	0.028	0.34	25.45	2.84	66.92
AY1K1-800	343.26	108.20	235.06	0.222	0.055	0.167	3.05	75.30	3.17	78.46
AY1Mg1-800	250.31	41.43	208.88	0.439	0.021	0.418	19.90	95.22	8.42	88.28

[a] Surface area and pore volume of micropores determined by t-plot method; [b] Total pore volume of pores at P/P₀=0.99; [c] BJH desorption average pore diameter; [d] Porosity= $V_{total}/(V_{total}+$ Mass of tested sample/ Density of carbon), here the density of carbon is 1.99 g cm⁻³.

Fig. S4 The SEM images of (a) AY_1K_1 -800 and (b) AY_1Mg_1 -800.

Fig. S5 Fitted Raman spectra of other samples

Fig. S6 The values of S_{D1}/S_G, S_{D3}/S_G, S_{D4}/S_G and S_G/S_{All} of samples prepared at different mass ratio of N-oil/ZnCl₂.

Fig. S7 (a-d) High-resolution C1s spectra of other samples; (e-h) High-resolution O1s spectra of other samples; (i-l) High-resolution N1s spectra of other samples.

Fig. S8 CV curves of AY_xZn_y-T in O₂-saturated and N₂-saturated 0.1 M KOH electrolyte at a scan rate of 10 mV s⁻¹.

Fig. S9 (a-d) LSV curves for other samples in O₂-saturated 0.1 M KOH at various rotating speeds; (e-h) the corresponding K-L plots for ORR in O₂-saturated 0.1 M KOH.

Comulo	Eonset	$E_{1/2}$	j lim	<i>n</i> ^[a]	
Sample	V vs.Ag/AgCl	V vs.Ag/AgCl	mA cm ⁻²		
AY ₁ Zn ₁ -800	0.044	-0.174	5.91	3.75	
$AY_{2}Zn_{1}-800$	-0.054	-0.354	3.49	3.23	
AY ₂ Zn ₁ -800	0	-0.214	3.47	3.03	
$AY_{1}Zn_{1}-700$	-0.059	-0.38	3.17	2.86	
$AY_{1}Zn_{1}-900$	0.016	-0.317	3.99	3.27	
Pt/C (20 wt%)	0.048	-0.152	6.26	~4	

 Table S2 The LSV parameters for the carbons and commercial Pt/C catalyst tested by RDE

[a] The electron transfer number calculated based on K-L plot method