## Thermal annealing effects on hydrothermally synthesized unsupported MoS<sub>2</sub> for enhanced deoxygenation of Propylguaiacol and Kraft lignin

## You Wayne Cheah<sup>a</sup>, Muhammad Abdus Salam<sup>a</sup>, Joby Sebastian<sup>a</sup>, Sreetama Ghosh<sup>a</sup>, Olov Öhrman<sup>b</sup>, Derek Creaser <sup>a</sup> and Louise Olsson<sup>a,\*</sup>

<sup>a</sup>Competence Centre for Catalysis and Chemical Engineering, Chalmers University of Technology, Gothenburg, 41296, Sweden

## <sup>b</sup>Preem AB Sweden

<u>\*louise.olsson@chalmers.se</u>

| Aluminium, Al  | 18      | mg/kg | Manganese, Mn    | 58      | mg/kg |
|----------------|---------|-------|------------------|---------|-------|
| Antimony,Sb    | 0.06    | mg/kg | Molybdenum, Mo   | 0.7     | mg/kg |
| Arsenic, As    | 0.08    | mg/kg | Sodium, Na       | 9300    | mg/kg |
| Barium, Ba     | 2       | mg/kg | Neodymium, Nd    | 0.005   | mg/kg |
| Beryllium, Be  | 0.013   | mg/kg | Niobium, Nb      | <0.005  | mg/kg |
| Lead, Pb       | 0.04    | mg/kg | Nickel, Ni       | 0.4     | mg/kg |
| Boron, B       | 22      | mg/kg | Osmium, Os       | <0.005  | mg/kg |
| Bromine, Br    | 1.2     | mg/kg | Palladium, Pd    | <0.005  | mg/kg |
| Cerium, Ce     | 0.012   | mg/kg | Platinum, Pt     | <0.005  | mg/kg |
| Cesium, Cs     | 0.13    | mg/kg | Praseodymium, Pr | <0.005  | mg/kg |
| Dysprosium, Dy | <0.005  | mg/kg | Rhenium, Re      | < 0.005 | mg/kg |
| Erbium, Er     | <0.005  | mg/kg | Rhodium, Rh      | <0.005  | mg/kg |
| Europium, Eu   | <0.005  | mg/kg | Rubidium, Rb     | 4.2     | mg/kg |
| Phosphorus, P  | 12      | mg/kg | Ruthenium, Ru    | < 0.005 | mg/kg |
| Gadolinium, Gd | <0.005  | mg/kg | Samarium, Sm     | < 0.005 | mg/kg |
| Gallium, Ga    | 0.15    | mg/kg | Selenium, Se     | 0.09    | mg/kg |
| Germanium, Ge  | 0.03    | mg/kg | Silver, Ag       | 0.03    | mg/kg |
| Gold, Au       | <0.005  | mg/kg | Scandium, Sc     | < 0.005 | mg/kg |
| Hafnium, Hf    | <0.005  | mg/kg | Strontium, Sr    | 1       | mg/kg |
| Holmium, Ho    | <0.005  | mg/kg | Sulphur, S       | 21000   | mg/kg |
| tridium, Ir    | <0.005  | mg/kg | Tantalum, Ta     | < 0.005 | mg/kg |
| lodine, l      | 0.5     | mg/kg | Tellurium, Te    | < 0.005 | mg/kg |
| Iron, Fe       | 30      | mg/kg | Thallium, Tl     | 0.03    | mg/kg |
| Cadmium, Cd    | 0.17    | mg/kg | Tin, Sn          | 0.1     | mg/kg |
| Calcium, Ca    | 200     | mg/kg | Terbium, Tb      | <0.005  | mg/kg |
| Potassium, K   | 1100    | mg/kg | Titanium, Ti     | 1.4     | mg/kg |
| Silicon, Si    | 6000    | mg/kg | Thorium, Th      | < 0.005 | mg/kg |
| Cobalt, Co     | 0.08    | mg/kg | Thulium, Tm      | <0.005  | mg/kg |
| Copper, Cu     | 0.9     | mg/kg | Uranium, U       | < 0.005 | mg/kg |
| Chromium, Cr   | 0.3     | mg/kg | Vanadium, V      | 19      | mg/kg |
| Mercury, Hg    | < 0.005 | mg/kg | Bismuth, Bi      | <0.005  | mg/kg |
| Lanthanum, La  | 0.007   | mg/kg | Tungsten, W      | 0.3     | mg/kg |
| Lithium, Li    | 0.07    | mg/kg | Ytterbium, Yb    | <0.005  | mg/kg |
| Lutetium, Lu   | <0.005  | mg/kg | Yttrium, Y       | 0.005   | mg/kg |
| Magnesium, Mg  | 21      | mg/kg | Zinc, Zn         | 13      | mg/kg |
|                |         |       | Zirconium, Zr    | 0.007   | mg/kg |
|                |         |       |                  |         |       |

Figure S1 ICP analysis of impurities in kraft lignin.

Table S1 Elemental analysis for kraft lignin.

| Elemental    | Wt%   |
|--------------|-------|
| analysis (%) |       |
| С            | 62.1  |
| Н            | 5.85  |
| Ν            | 0.35  |
| S            | 2.18  |
| О            | 29.5* |

\*by difference and neglecting other impurities



Figure S2 Nitrogen adsorption-desorption isotherms for studied catalysts.



Figure S3 Additional HRTEM images of a-c) MoS<sub>2</sub>-12, d-f) MoS<sub>2</sub>-12a, g-i) MoS<sub>2</sub>-24, and j-l) MoS<sub>2</sub>-24a.



*Figure S4a)* Distribution of the number of stacks and b) MoS<sub>2</sub> slab length for different unsupported MoS<sub>2</sub>.



Figure S5 Comparison of PG conversion and product selectivity for HDO of PG over  $MoS_2$ -24 following an annealing treatment under different atmosphere (air or  $N_2$ ) at 400 °C for 2 h. Reaction conditions: 50 bar total  $H_2$  pressure, 300 °C, and 1000 rpm.



Figure S6 Reaction product distribution for HDO of PG over a) Bulk  $MoS_2$  b) 13.2 wt%  $MoS_2$  supported on alumina at 50 bar total  $H_2$  pressure, 300 °C and 1000 rpm.



Figure S7 GC spectrum of the lignin fraction obtained from the hydrotreatment of kraft lignin over commercial MoS<sub>2</sub> (blue line) and MoS<sub>2</sub>-12a (black line). Reaction conditions: 3:1 lignin to catalyst ratio, 340 °C, 40 bar initial H<sub>2</sub> pressure, and 1000 rpm. The major compounds were labeled in the spectrum as (1) Methylcyclopentane, (2) Cyclohexane, (3) Methylcyclohexane, (4) Ethylcyclopentane, (5) Toluene, (6) Ethylcyclohexane, (7) 1,3-dimethylbenzene, (8) Propylcyclohexane, (9) Propylbenzene, (10) Guaiacol, (11) Creosol, (12) 4-ethyl-2methoxyphenol and (13) Propylguaiacol.

Table S2 Products identified from GC-MS spectra and product yields for hydrotreatment of Kraft lignin over bulk  $MoS_2$  and  $MoS_2$ -12a. Reaction conditions: 3:1 lignin to catalyst mass ratio, 340 °C, 40 bar initial  $H_2$  pressure, and 1000 rpm.

| Retention<br>time<br>(min) | Compound identified | Compound<br>chemical<br>formula | FID peak<br>area (Bulk<br>MoS <sub>2</sub> ) | Bulk MoS <sub>2</sub><br>Product yield<br>(area %) | FID peak<br>area<br>(MoS <sub>2</sub> -12a) | MoS <sub>2</sub> -12a<br>Product<br>yield (area<br>%) |
|----------------------------|---------------------|---------------------------------|----------------------------------------------|----------------------------------------------------|---------------------------------------------|-------------------------------------------------------|
| 7.135                      | Methylcyclopentane  | C <sub>6</sub> H <sub>12</sub>  | -                                            | -                                                  | $2.10 \times 10^{6}$                        | 2.53                                                  |
| 8.089                      | Cyclohexane         | C <sub>6</sub> H <sub>10</sub>  | $6.19 \times 10^{5}$                         | 1.9                                                | $1.56 \times 10^{7}$                        | 18.83                                                 |

| 8.148    | 1,3-                            | $C_{7}H_{14}$                  | -                        | _     | $9.45 \times 10^{5}$    | 1.14  |
|----------|---------------------------------|--------------------------------|--------------------------|-------|-------------------------|-------|
|          | dimethylcyclopentane            |                                |                          |       |                         |       |
| 9.073    | Methylcyclohexane               | $C_7H_{14}$                    | -                        | -     | $1.90 \times 10^{7}$    | 13.20 |
| 9.276    | Ethylcyclopentane               | $C_{7}H_{14}$                  | -                        | -     | $1.34 \times 10^{6}$    | 1.61  |
| 10.044   | Toluene                         | C <sub>7</sub> H <sub>8</sub>  | $3.98 \times 10^{5}$     | 1.22  | $3.47 \times 10^{6}$    | 4.18  |
| 10.126   | Cyclopentene                    | C <sub>7</sub> H <sub>12</sub> | $3.27 \times 10^{5}$     | 1.00  | -                       | -     |
| 10.392   | 1,3-                            | C <sub>8</sub> H <sub>16</sub> | -                        | -     | $5.77 \times 10^{5}$    | 0.69  |
|          | dimethylcyclohexane             |                                |                          |       |                         |       |
| 10.536   | Pentylcyclopentane              | $C_8H_{16}$                    | $7.76 \times 10^{5}$     | 2.38  | -                       | -     |
| 10.587   | 1-ethyl-3-                      | $C_8H_{16}$                    | -                        | -     | $9.70 \times 10^{5}$    | 1.17  |
|          | methylcyclopentane              |                                |                          |       |                         |       |
| 10.906   | 1,2-                            | $C_8H_{16}$                    | -                        | -     | $5.65 \times 10^{5}$    | 0.68  |
|          | dimethylcyclohexane             |                                |                          |       |                         |       |
| 11.650   | Propylcyclopentane              | $C_8H_{16}$                    | -                        | -     | $1.44 \times 10^{6}$    | 1.74  |
| 11.757   | Ethylcyclohexane                | $C_8H_{16}$                    | -                        | -     | $1.06 \times 10^{7}$    | 12.78 |
| 12.343   | 1,3-dimethylbenzene             | $C_8H_{10}$                    | -                        | -     | $3.68 \times 10^{6}$    | 4.44  |
| 12.547   | Xylene                          | $C_8H_{10}$                    | -                        | -     | $7.12 \times 10^{5}$    | 0.86  |
| 12.920   | 1-methyl-2-                     | $C_{9}H_{18}$                  | -                        | -     | $1.39 \times 10^{6}$    | 1.69  |
|          | propylcyclopentane              |                                |                          |       |                         |       |
| 12.946   | Octylcyclopentane               | $C_{11}H_{22}$                 | $9.91 \times 10^{5}$     | 3.04  | -                       | -     |
| 13.480   | 1-ethyl-4-                      | $C_{9}H_{18}$                  | -                        | -     | $6.73 \times 10^{5}$    | 0.82  |
|          | methylcyclohexane               |                                |                          |       |                         |       |
| 13.782   | (1-                             | $C_{10}H_{20}$                 | -                        | -     | $1.11 \times 10^{6}$    | 1.34  |
|          | methylethyl)cyclohexa           |                                |                          |       |                         |       |
|          | ne                              |                                |                          |       |                         |       |
| 13.984   | Propylcyclohexane               | $C_{9}H_{18}$                  | -                        | -     | $1.42 \times 10^{7}$    | 17.16 |
| 14.433   | Propylbenzene                   | C9H12                          | -                        | -     | $4.24 \times 10^{6}$    | 5.12  |
| 14.573   | 1-ethyl-3-                      | $C_{9}H_{12}$                  | -                        | -     | $4.48 \times 10^{5}$    | 0.54  |
|          | methylbenzene                   |                                | <i>.</i>                 |       |                         |       |
| 14.748   | Phenol                          | $C_6H_6O$                      | $1.87 \times 10^{6}$     | 5.71  | -                       | -     |
| 15.077   | 1-methyl-2-                     | $C_{10}H_{20}$                 | -                        | -     | $4.39 \times 10^{5}$    | 0.53  |
|          | propylcyclohexane               |                                |                          |       |                         |       |
| 15.132   | (2-methylpropyl)-               | $C_{10}H_{20}$                 | -                        | -     | $2.31 \times 10^{5}$    | 0.28  |
|          | cyclohexane                     |                                |                          |       |                         |       |
| 15.424   | 1-Methyl-4-(1-                  | $C_{10}H_{18}$                 | -                        | -     | $2.22 \times 10^{3}$    | 0.27  |
|          | methylethyl)-                   |                                |                          |       |                         |       |
|          | cyclohexane                     |                                |                          |       |                         |       |
| 15.924   | (1-methylpropyl)-               | $C_{10}H_{20}$                 | -                        | -     | $3.29 \times 10^{3}$    | 0.40  |
| 16.024   | Cyclohexane                     | C II                           |                          |       | <b>5</b> ( <b>7</b> 105 | 0.60  |
| 16.034   | n-butylbenzene                  | $C_{10}H_{14}$                 | -                        | -     | $5.67 \times 10^{5}$    | 0.68  |
| 16.136   | Cyclopropylbenzene              | $C_9H_{10}$                    | -                        | -     | $1.08 \times 10^{5}$    | 1.31  |
| 16.321   | I-methyl-3-                     | $C_{10}H_{14}$                 | -                        | -     | $9.61 \times 10^{5}$    | 1.16  |
| 16 4 4 1 | propylbenzene                   | C II                           |                          |       | 2.00 × 1.05             | 0.47  |
| 16.441   | n-butylbenzene                  | $C_{10}H_{14}$                 | -                        | -     | $3.89 \times 10^{5}$    | 0.4/  |
| 16.588   | 3-methylphenol                  | $C_7H_8O$                      | $2.04 \times 10^{\circ}$ | 6.25  | -                       | -     |
| 16.944   | Guaiacol                        | $C_7H_8O_2$                    | $5.13 \times 10^{\circ}$ | 15./1 | -                       | -     |
| 17.134   | (2-                             | $C_{11}H_{22}$                 | -                        | -     | $3.31 \times 10^{5}$    | 0.40  |
|          | wietnyibutyi)cyclohex           |                                |                          |       |                         |       |
| 17.922   | ane<br>Deutsclasse 1 also asso  | C II                           |                          |       | 5 45× 105               | 0.((  |
| 17.832   | 2.4. directionexane             | $C_{11}H_{22}$                 | -                        | -     | 3.45× 10°               | 0.00  |
| 17.010   | 2,4-uineinyipnenoi              | $C_8\Pi_{10}U$                 | 2.09 × 10°               | 0.88  | -                       | -     |
| 17.919   | (3-memyi-2-butenyi)-<br>benzene | $C_{11}\Pi_{14}$               | -                        | -     | 3.30× 10°               | 0.41  |

| 18.151 | 3-ethylphenol         | $C_8H_{10}O$      | $1.43 \times 10^{6}$ | 4.37  | -                    | -    |
|--------|-----------------------|-------------------|----------------------|-------|----------------------|------|
| 18.152 | 2,5-Dimethylphenyl    | $C_{10}H_{14}O$   | -                    | -     | $1.03 \times 10^{6}$ | 1.24 |
|        | methyl carbinol       |                   |                      |       |                      |      |
| 18.395 | 1,2,3,4-tetrahydro-   | $C_{10}H_{12}$    | -                    | -     | $8.78 \times 10^{5}$ | 1.06 |
|        | Naphthalene           |                   |                      |       |                      |      |
| 18.658 | Creosol               | $C_8H_{10}O_2$    | $7.09 \times 10^{6}$ | 21.71 | -                    | -    |
| 19.247 | 3,4-dimethoxyltoluene | $C_9H_{12}O_2$    | $4.63 \times 10^{5}$ | 1.42  | -                    | -    |
| 19.249 | 1,2,3,4-tetrahydro-2- | $C_{11}H_{14}$    | -                    | -     | $5.24 \times 10^{5}$ | 0.63 |
|        | methyl- Naphthalene   |                   |                      |       |                      |      |
| 19.563 | 3-propylphenol        | $C_9H_{12}O$      | $1.21 \times 10^{6}$ | 3.69  | -                    | -    |
| 19.927 | 4-ethyl-2-            | $C_9H_{12}O_2$    | $4.73 \times 10^{6}$ | 14.50 | -                    | -    |
|        | methoxyphenol         |                   |                      |       |                      |      |
| 20.460 | 4-ethyl-1,2-          | $C_{10}H_{14}O_2$ | $3.93 \times 10^{5}$ | 1.20  | -                    | -    |
|        | dimethoxybenzene      |                   |                      |       |                      |      |
| 20.634 | 2,5-diol-p-cymene     | $C_{10}H_{14}O_2$ | $2.71 \times 10^{5}$ | 0.83  | -                    | -    |
| 20.884 | 4-(2-propenyl)-phenol | $C_9H_{10}O$      | $6.56 \times 10^{5}$ | 2.01  | -                    | -    |
| 21.171 | 2-methoxy-4-          | $C_{10}H_{14}O_2$ | $2.76 \times 10^{6}$ | 8.28  | -                    | -    |
|        | propylphenol          |                   |                      |       |                      |      |
| 21.502 | 4-(1-methylethyl)-    | $C_{10}H_{12}O$   | $1.27 \times 10^{6}$ | 3.89  | -                    | -    |
|        | benzaldehyde          |                   |                      |       |                      |      |