Supporting Information

Construction of a hierarchically structured, NiCo-Cu-based trifunctional electrocatalyst for efficient overall water splitting and 5hydroxymethylfurfural oxidation

Ruijuan Zheng^a, Chenhao Zhao^a, Jinhua Xiong^a, Xue Teng^b, Wuhua Chen^a, Zhibiao Hu^a and Zuofeng Chen^{b,*}

^aFujian Provincial Colleges and University Engineering Research Center of Solid
Waste Resource Utilization (Longyan University); Fujian Provincial Key Laboratory
of Clean Energy Materials, Longyan University, Longyan 364012, Fujian, China;
^bShanghai Key Laboratory of Chemical Assessment and Sustainability, School of
Chemical Science and Engineering, Tongji University, Shanghai 200092, China.

EXPERIMENTAL

Chemicals. Commercial copper foam (CF) with a thickness of 2 mm was performed from Kunshan Lvchuang Electronics Co. LTD. 5-Hydroxymethylfurfural (HMF, 99%), 2, 5-furandicarboxylic acid (FDCA, 98%), 2-formyl-5-furancarboxylic acid (FFCA, 98%), 2, 5-Diformylfuran (DFF, 98%) and 5-Hydroxymethyl-2-furancarboxylic acid (HMFCA, 98%) were purchased from Aladdin. Concentrated hydrochloric acid (HCl, 37%), sodium hydroxide (NaOH, 96%), potassium hydroxide

(KOH, 85%), ammonium persulfate ((NH₄)₂S₂O₈, 98%), cobalt chloride hexahydrate (CoCl₂•6H₂O, 99%) and nickel chloride hexahydrate (NiCl₂•6H₂O, 98%) were purchased from Sinopharm Group Co. LTD. All reagents were used directly without any further purification. Unless stated otherwise, deionized water was used in all experiments.

Apparatus. Scanning electron microscopy (SEM) images and energy dispersive X-ray (EDX) elemental analysis data were obtained at Hitachi S-4800. Powder X-ray diffraction (XRD) patterns were measured by X'Pert 3 Powder. X-ray photoelectron spectroscopy (XPS) analysis for elemental compositions and valence states was conducted on a Kratos Axis Ultra DLD X-ray Photoelectron Spectrometer. The elemental contents of Ni and Co were measured by the inductively coupled plasma atomic emission spectroscopy (ICP-AES) using the Perkin Elmer ICP-OES Optima 8300.

All electrochemical measurements were conducted on a CHI 660E electrochemical workstation (Chenhua Corp., Shanghai, China) with a typical threeelectrode setup in an electrolyte solution of 1 M KOH, consisting of a NiCo_{NSs}/Cu NWs as the working electrode, a graphite rod as a counter electrode and a saturated calomel electrode (SCE) as the reference electrode. The two-compartment cell was separated by an anion exchange membrane. Linear sweep voltammetry (LSV) measurements were conducted in 1 M KOH at a scan rate of 2 mV/s. Potentials reported were referenced to a reversible hydrogen electrode by E (RHE) = E (SCE) + 1.044 V. The electrochemical impedance spectroscopy (EIS) measurements were carried out in the range from 10^5 to 1 Hz with an amplitude of 5 mV at the opencircuit potential in 1 M KOH. The electrochemically active surface area (ECSA) was investigated by cyclic voltammetry (CV) to determine the electrochemical doublelayer capacitances (C_{dl}) in 1 M KOH. All electrochemical measurements were conducted without *i*R compensation. All experiments were performed at 22 ± 2 °C.

Synthesis of NiCo_{NSS}/CuNWs. The NiCo_{NSS}/CuNWs was prepared by a facile three-step procedure. Firstly, a piece of Cu foam (1 cm × 2 cm) was immersed in 3 M HCl to remove surface oxide layer, and then cleaned with deionized water by ultrasonication for 10 min. To obtain Cu(OH)₂ nanowires (NWs) on Cu foam (CF), The cleaned Cu foam was immersed into aqueous solution containing 2 M NaOH and 0.1 M (NH₄)₂S₂O₈ for 25 min silently. The color of Cu foam surface was changed from golden yellow to blue-green. The Cu foam was taken out from the solution, rinsed with deionized water and dried in air. The electrochemical reduction of Cu(OH)₂ NWs to Cu NWs was achieved by applying a constant cathodic current density of 20 mA cm⁻² in 1 M Na₂SO₄ aqueous solution, and the color of the Cu(OH)₂ nanowires was changed from blue-green to dark wine. The resultant Cu NWs was cleaned with deionized water for several times, then dried at 60 °C in a vacuum drying oven.

The NiCo_{NSs}/Cu_{NWs} electrode was synthesized by a simple cyclic voltammetry method in an electrolyte containing 0.1 M CoCl₂ and 0.1 M NiCl₂. The electrodeposition process was carried out in a three-electrode system using Cu NWs as the working electrode, a graphite rod as the counter electrode, and a saturated

calomel electrode (SCE) as the reference electrode within a potential range of -1.2 to 0.2 V at a scan rate of 10 mV/s for 25 cycles. After electrodeposition, the electrodes were carefully rinsed thoroughly with deionized water and ethanol and dried at 60 °C in a vacuum drying oven.

Commercial 20% Pt/C (or RuO₂) with a mass loading of 3 mg cm⁻² was dropped onto Cu NWs electrode, followed by drying in an electric oven at 60 °C.

HPLC analysis. HPLC (Shimadzu Prominence LC-2030C system) equipped with an ultraviolet-visible detector set at 265 nm and a 4.6 mm \times 150 mm Shim-pack GWS 5 µm C18 column was used to analyze HMF and its oxidation products. Specifically, 10 µL of electrolyte was periodically collected during potentiostatic electrolysis and diluted with 990 mL water. The eluent solvent is a mixture aqueous solution of 5 mM ammonium formate and methanol, the ratio of ammonium formate and methanol was 7: 3. The flow rate is 0.5 ml min⁻¹, and each separation lasts for 10 minutes.

Figure S1. SEM images of Cu foam substrate of different magnifications.

Figure S2. SEM images of Ni_{NSs}/Cu_{NWs} (A) and Co_{NSs}/Cu_{NWs} (B)

Figure S3. Survey XPS spectrum of $NiCo_{NSs}/Cu_{NWs}$.

Figure S4. Cyclic voltammograms at scanning rates of 10, 20, 40, 60, 80 and 100 mV/s in the potential range of $0.545 \sim 0.645$ *vs.* RHE and capacitive current at 0.595 V as a function of the scan rate for different electrodes in 1 M KOH. (A, B) Cu foam; (C, D) Cu(OH)₂ NWs; (E, F) Cu NWs.

Figure S5. EIS spectra of different material samples at open circuit potentials in 1 M

KOH.

Figure S6. Comparison of electrocatalytic durability of $NiCo_{NSs}/Cu_{NWs}$ with benchmark Pt/C and RuO₂ in 1 M KOH (A) HER electrocatalytic durability of $NiCo_{NSs}/Cu_{NWs}$ and Pt/C, (B) OER electrocatalytic durability of $NiCo_{NSs}/Cu_{NWs}$ and RuO₂

Figure S7. LSV curves for HER (A) and OER (B) at $NiCo_{NSs}/Cu_{NWs}$ prepared with different concentration ratio of $NiCl_2$ and $CoCl_2$.

Figure S8. LSV curves for HER (A) and OER (B) at $NiCo_{NSs}/Cu_{NWs}$ prepared by different cycles of electrodeposition.

Figure S9. LSV curves for HER (A) and OER (B) at $NiCo_{NSs}/Cu(OH)_{2 NWs}$ and $NiCo_{NSs}/Cu_{NWs}$.

Figure S10. SEM images of $NiCo_{NSs}/Cu_{NWs}$ after overall water splitting an applied

voltage of 1.78 V for 20 hours: (A, B) HER side, (C, D) OER side.

Figure S11. (A) LSV curves at a scan rate of 2 mV s⁻¹ and (B) Tafel plots of $NiCo_{NSs}/Cu_{NWs}$ and other contrast samples in 1.0 M KOH with 10 mM added HMF.

Figure S12. (A) HPLC measurements of pure HMF and FDCA. (B) HPLC chromatograms and calibration of the HPLC for (C) HMF and (D) FDCA.

Figure S13. SEM image of NiCo_{NSs}/Cu_{NWs} after 6 h electrolysis at 1.44 V vs. RHE in

1.0 M KOH with 10 mM added HMF.

Figure S14. LSV curves for HER at $NiCo_{NSs}/Cu_{NWs}$ at a scan rate of 2 mV s⁻¹ in 1.0 M KOH with and without 10 mM HMF.

Table	S1.	Contents	of Ni	and	Co	of	NiCo _N	Ss/Cu _{NW}	/s by	ICP-AES	S analysis	and	the
correla	ation	between	the Ni/	Co c	onte	ent a	and HE	R/OER	cata	lytic perfo	ormance.		

concentration ratio of Ni^{2+} and Co^{2+}	Element	mass loading	HER (η@10 mA cm ⁻²)	OER (η@10 mA cm ⁻²)		
		(mg/cm^{-2})	(mV)	(mV)		
1.2	Ni	0.38	201	320		
1.2	Co	0.605	201			
1.1	Ni	0.415	40	303		
1.1	Co	0.425	49			
2.1	Ni	0.64	122	200		
2.1	Co	0.312	132	308		

Table S2. Comparison of the HER performance for the $NiCo_{NSs}/Cu_{NWs}$ catalyst with other reported electrocatalysts in 1 M KOH electrolyte.

Catalysts	Supports	η (10 mA cm ⁻²)	References
CoNi@NC	Glassy carbon	142	Angew. Chem. Int. Ed. 2015, 54, 2100
CoNi-OOH-30(40)	Titanium sheets	210	Electrochim. Acta 2019, 301, 449
CoNiBDC/CC	Carbon Cloth	135	New J. Chem. 2020, 44, 1694
Co81Ni19 nanosheet arrays	Cu foam	132	J. Power Sources 2019, 427, 184
CoNi@NC-NCNTs	Carbon cloth	85	Appl. Surf. Sci. 2020, 517, 145841
NiCo ₂ O ₄ /NiCoP	RDE	198	Catal. Sci. Technol. 2020, 10, 5559
MoS ₂ /Co ₉ S ₈ /Ni ₃ S ₂	Nickel foam	113	J. Am. Chem. Soc. 2019, 141, 10417
NiCo-nitrides/NiCo2O4	Graphite fibers	71	Adv. Sci. 2019, 6, 1801829
CoP@BCN	Glassy carbon	215	Adv. Energy Mater. 2017, 7, 1601671
MoS ₂ /Ni ₃ S ₂	Nickel foam	110	Angew. Chem. Int. Ed. 2016, 55, 6702
Co(OH)2@P-NiCo-LDH	Carbon paper	226	J. Colloid Interf. Sci. 2021, 582, 535
NiCo ₂ S ₄	Glassy carbon	345	RSC Adv. 2020, 10, 22196
NiCoP@Cu ₃ P	Cu foam	54	J. Mater. Chem. A. 2018, 6, 2100
$Cu_{0.50}Fe_{0.50}$	NF	158	Small 2020, 16, 1905884
Cu ₃ P@NPC	copper foam	135.45	Sustainable Energy Fuels 2021, 5, 2451
Cu ₃ N	NF	118	ACS Energy Lett. 2019, 4, 747
Co ₂ P@NPPC	glass carbon	240	Sustainable Energy Fuels 2021, 5, 2477
NiCo _{NSs} /Cu _{NWs}	Cu foam	50	This work

Table S3. Comparison of the OER performance for the $NiCo_{NSs}/Cu_{NWs}$ catalyst with other reported electrocatalysts in 1 M KOH electrolyte.

Catalysta	Summonto	η (10 m A am-	References		
Catalysts	Supports	(10 mAcm ²)	Kelefences		
Ni-Co nanowire	Carbon fiber	302	Adv. Energy Mater. 2017, 7, 1601492		
CoNi(OH) _x	Cu foil	280	Adv. Energy Mater. 2016, 6, 1501661		
Exfoliate NiFe LDH	Glassy carbon	302	Nat. Commun. 2014, 5, 5477		
NiCoP/C nanobox	Glassy carbon	330	Angew. Chem. Int. Ed. 2017, 56, 3897		
Мо-СоООН	Glassy carbon	305	Nano Energy 2018 , 48, 73		
CoNi-OOH-30(40)	Titanium sheets	279	Electrochim. Acta 2019, 301, 449		
Co-Mo ₂ C NPs	Glassy carbon	347	Appl. Catal. B-Environ. 2018, 227, 340		
Co/NiMOFs@Fe	Fe foam	264	Chemcatchem 2019, 18, 6061		
Ni-MOF	Carbon	346	Chemelectrochem 2018, 5, 2795		
Co-Fe/Ni@HPA-MOF	Glassy carbon	320	J. Solid State Chem. 2019, 272, 32		
Мо-СоООН	Glassy carbon	305	Nano Energy 2018 , 48, 73		
NiCoP@Cu ₃ P	Cu foam	309	J. Mater. Chem. A 2018, 6, 2100		
Co ₃ S ₄ @MoS ₂	Glassy carbon	280	Nano Energy 2018 , 47, 494		
CoMnP	Glassy carbon	330	J. Am. Chem. Soc. 2016, 138, 4006		
CoNi(OH) _x nanotubes	Cu foil	280	Adv. Energy Mater. 2016, 6, 1501661		
NiCo ₂ O ₄ /NiCoP	RDE	295	Catal. Sci. Technol. 2020, 10, 5559		
NiCo LDH nanostructures	Carbon paper	367	Nano Lett. 2015, 15, 1421		
S-CoMn ₂ O ₄ -MSs	FTO	300	J. Mater. Chem. A. 2021, 9, 12255		
Mn _x Co _{3-x} O ₄	Ni foam	327	Int. J. Hydrogen Energy 2020, 45, 14867		
Mined Ni Ce Mu enide	Classes and an	400	ACS Appl. Energy Mater.		
Mixed NI-Co-Min oxide	Glassy carbon	400	10.1021/acsaem.0c00544		
Defect-rich Cobalt oxide	Glassy carbon	369	ChemSusChem 2020, 13, 520		
Co@NCNT	GCE	310	Sustainable Energy Fuels 2021, 5, 820		
Co ₂ P@NPPC	Glassy carbon	316	Sustainable Energy Fuels 2021, 5, 2477		
Co/P/N-CNP	NF	311	Electrochim. Acta 2020, 337, 135807		
NiCo _{NSs} /Cu _{NWs}	Cu foam	303	This work		

Table S4. Comparison of the bifunctional water splitting activity of $NiCo_{NSs}/Cu_{NWs}$ catalyst with other reported electrocatalysts in 1 M KOH electrolyte.

Catalysts	Overall voltages	Deferences		
Catalysis	(10 mAcm ⁻²)	Keterences		
NiFe/NiCo ₂ O ₄ /NF	1.67	Adv. Funct. Mater. 2016, 26, 3515		
NiFe LDH/NF	1.70	Science 2014, 345, 1593		
CoP/rGO	1.7	Chem. Sci. 2016, 7, 1690		
$Ni_xCo_{3-x}O_4 \parallel NiCo/NiCoOx$	1.75	ACS Appl. Mater. Interfaces 2016, 8, 4718		
$NiCo_{2}O_{4} \parallel Ni_{0.33}Co_{0.67}S_{2}NWs$	1.73	Adv. Energy Mater. 2015, 5, 1402031		
NiCo ₂ O ₄	1.65	Angew. Chem. Int. Ed. 2016, 55, 6290		
CoO/MoO _x	1.72	ACS Sustain. Chem. Eng. 2016, 4, 3743		
Co ₁ Mn ₁ CH/NF	1.68	J. Am. Chem. Soc. 2017, 139, 832		
Co-Fe oxyphosphide microtubes	1.69	Adv. Sci. 2019, 6, 1900576		
CP/CTs/Co-S	1.76	ACS nano 2016, 10, 2342		
CoNi-OOH-30(40)	1.76	Electrochim. Acta 2019, 301, 449		
NiCo _{NSs} /Cu _{NWs}	1.69	This work		