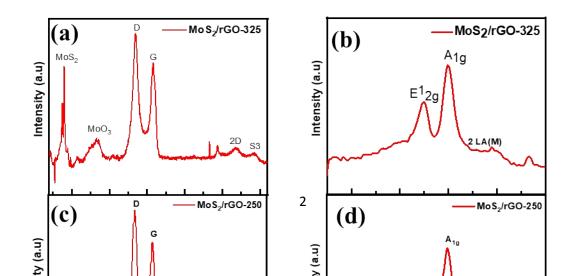
Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Tuning Defects in the MoS₂/Reduced Graphene Oxide 2D Hybrid Materials


for Optimizing Battery Performance

Kamalambika Muthukumar, Levon Leban II, Archana Sekar, Ayyappan Elangovan, Nandini

Sarkar, and Jun Li^\ast

Department of Chemistry, Kansas State University, Manhattan, Kansas, 66506, USA.

Figure S1. The full scale and expanded region of Raman spectra of (a, b) $MoS_2/rGO-325$, (c, d) $MoS_2/rGO-250$ and (e, f) MoS_3/rGO intermediate product.

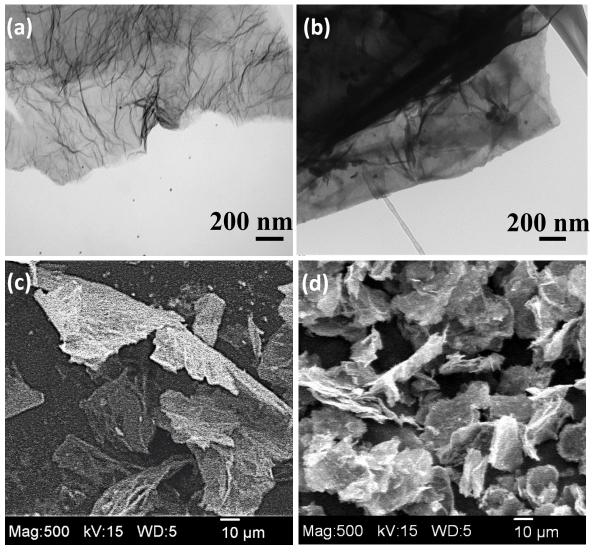
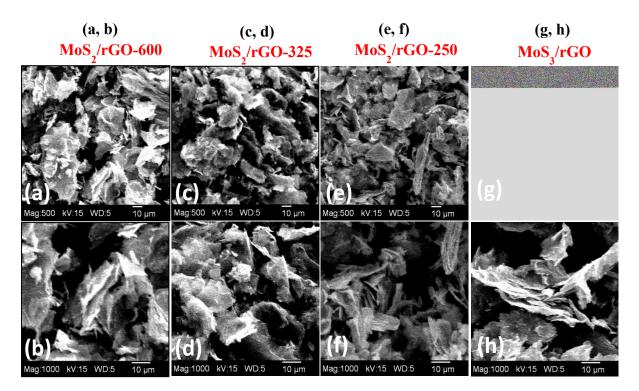



Figure S2. Raman Spectra of graphene oxide (GO) precursor material.


Figure S1. The full scale and expanded region of Raman Spectra of (a, b) $MoS_2/rGO-600$, (c, d) $MoS_2/rGO-325$ and (e, f) MoS_3/rGO intermediate product.

Sample	I_D/I_G	I _{S3} /I _{2D}
GO Precursor	0.9	1.7
MoS ₃ /rGO- intermediate	1.3	0.3
MoS ₂ /rGO-250	1.3	0.3
MoS ₂ /rGO-325	1.3	0.4
MoS ₂ /rGO-600	1.3 3	0.4

Table S1. Raman Analysis of GO precursor and $\mathrm{MoS}_{2}\!/\mathrm{rGO}$ hybrids

Figure S3. TEM images of (a) bare rGO nanosheets and (b) the MoS_3/rGO intermediate. (c) and (d): SEM images of these two samples, respectively. The bare rGO sample was prepared with microwave irradiation in absence of ATM precursors before subjected to thermal annealing at 600 °C in 3% H₂ and 97% Ar. The MoS_3/rGO intermediate was obtained after the microwave irradiation in presence of ATM precursors but was not subjected to the thermal annealing.

Figure S4. Low- and higher-magnification FESEM images of (a, b) $MoS_2/rGO-600$, (c, d) $MoS_2/rGO-325$, (e, f) $MoS_2/rGO-250$, and (g, h) MoS_3/rGO -intermediate.

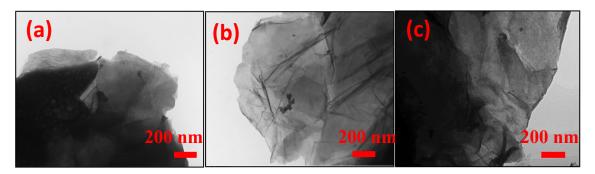
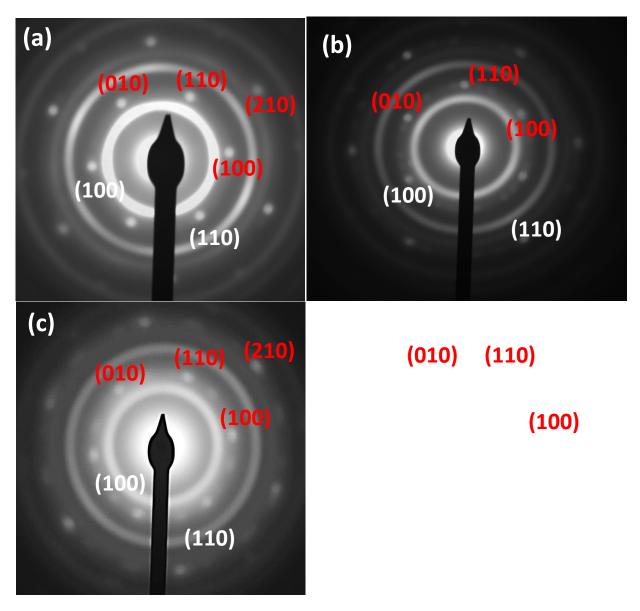
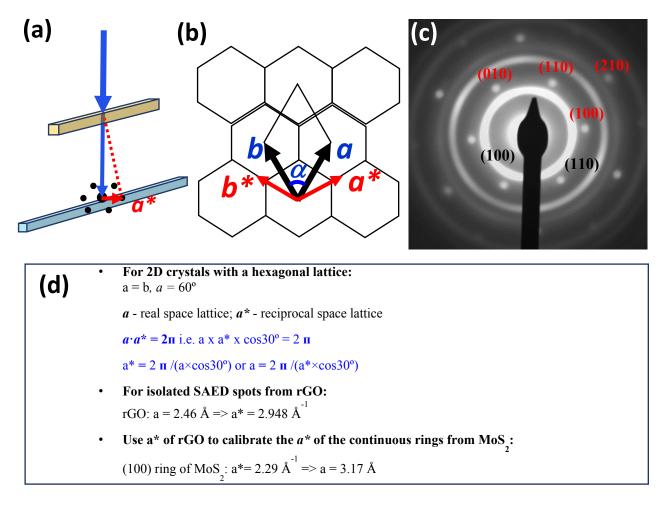




Figure S5. TEM images of (a) $MoS_2/rGO-250$, (b) $MoS_2/rGO-325$, and (c) $MoS_2/rGO-600$.

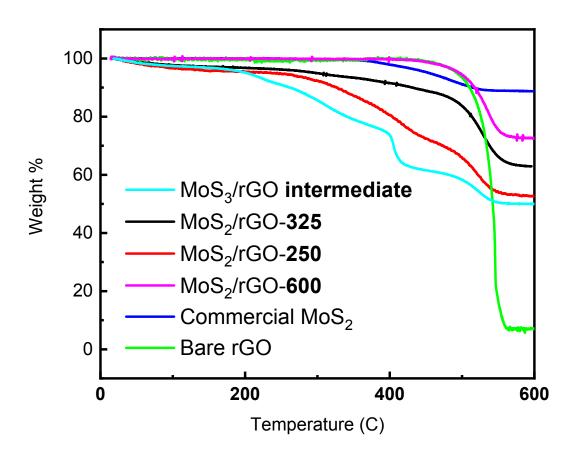

Figure S6. SAED patterns of (a) $MoS_2/rGO-600$, (b) $MoS_2/rGO-325$, (c) $MoS_2/rGO-250$, and (d) MoS_3/rGO intermediate. The red-colored indices at the top indicate the isolated 2D electron diffraction spots with the six-fold symmetry from the rGO nanosheets, while the white indices at the bottom indicate the continuous rings of 2D powder electron diffraction from MoS_2 nanopatches with random rotational orientations in the rGO plane.

Figure S7. (a) Schematic illustration of the SAED with the electron beam perpendicular to the 2D crystal plane. (b) The relationship of the real space 2D hexagonal lattice a and b and the reciprocal diffraction lattice (a^* and b^*). (c) The SAED pattern of MoS₂/rGO-600. (d) The procedure to derive the MoS₂ lattice in reference to the sharp hexagonal SAED pattern of the 2D monocrystalline rGO nanosheets.

		MoS ₃ /rGO intermediate		MoS ₂ /rGO-250		MoS ₂ /rGO-325		MoS ₂ /rGO-600		
		B.E. (eV)	Atomic % in the same element	B.E. (eV)	Atomic % in the same element	B.E. (eV)	Atomic % in the same element	B.E. (eV)	Atomic % in the same element	
M0 ⁴⁺	3d _{5/2}	229.08	28.58	229.03	83.08	229.12	66.41	229.28	68.24	
3d _{3/2}	3d _{3/2}	232.21		232.16		232.25		232.41		
	3d _{5/2}	229.32	19.39	230.52	9.44	Mo ⁵⁺			Mo 5+ is not present in this	
M0 ⁵⁺ 3d _{3/2}	3d _{3/2}	232.45		233.65		Mo ⁵⁺ is not present in this sample		sample		
M0 ⁶⁺	3d _{5/2}	232.11	52.03	232.68	7.48	231.90	33.58	232.18	31.75	
MO	3d _{3/2}	235.24		235.81		235.03		235.31		
S ²⁻	2p _{3/2}	162.59	45.99	161.68	46.46	161.93	86.50	162.09	100	
S ²⁻	2p _{1/2}	163.78		162.47		163.21		163.27		
S 2-	2p _{3/2}	164.76	54.01	162.94	53.54	163.41	13.50			
S2 ²⁻	2p _{1/2}	165.79		164.10		164.58				
Mo : S		1:2.4		1:2.9		1:2.3		1:1.9		

Table S2. The parameters derived from deconvolution of Mo 3d and S 2p XPS spectra.

Figure S8. Thermogravimetric analyses of various hybrid materials and control samples (commercial MoS_2 powder and bare rGO synthesized at the same conditions as $MoS_2/rGO-600$ but without presence of ATM precursors).

Determination of weight % of MoS, in MoS,/rGO-600:

- Bulk MoS₂ shows gradual weight loss of 10.1% from 370 °C to 600°C due to the conversion of MoS₂ to MoO₂.
- 2. Control rGO shows a steep weight loss of 93.36% at 420 °C due to the conversion of rGO to graphitic carbon.
- 3. Based on the above-mentioned weight loss of control samples
- 4. Weight loss from 370 °C till 600 °C = Weight loss of MoS_2 +Weight loss of rGO

= (Weight% of MoS_{γ}) *10.1% +(1-Weight% of MoS_{γ}) *93.36%

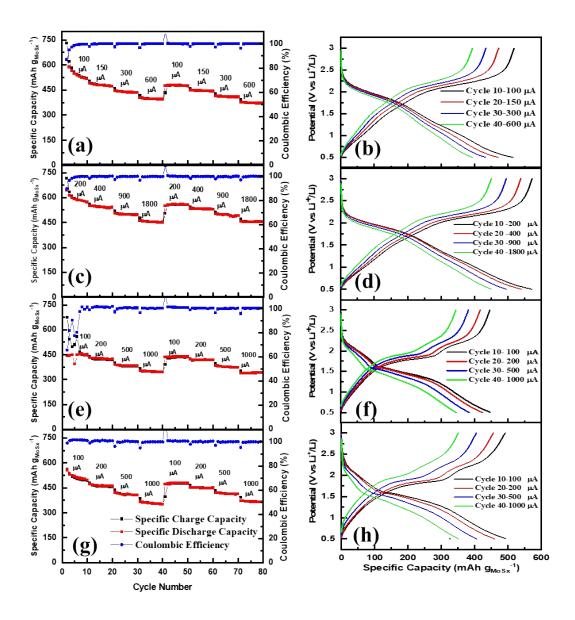
- 5. Weight% of rGO = 1-Weight% of MoS₂
- 6. $(99.91\% 72.57\%) = (Weight \% of MoS_2) *10.1\% + (1 Weight \% of MoS_2) *93.36\%$
- 7. Weight % of MoS_2 in $MoS_2/rGO-600 = 79.29\%$

Samples	wt% of N	wt% of C	wt% of H	wt% of O	wt% of S	wt% of Mo ^a	wt% of MoS _x ^b	wt% of rGO ^c	at% of Mo ^d	at% of S ^d	Mo:S ^e
MoS ₂ /rGO- 600	0.30	19.98	0.15	1.17	33.52	44.88	78.40	21.15	13.51	30.69	1:2.3
MoS ₂ /rGO- 325	0.62	22.46	0.31	4.62	31.17	40.82	71.99	27.08	9.58	21.60	1:2.3
MoS ₂ /rGO- 250	1.07	18.62	0.31	5.14	38.56	36.30	74.86	23.76	9.90	31.25	1:3.2
MoS ₃ /rGO- intermediate	1.82	20.31	0.99	11.07	35.38	30.43	65.81	31.38	6.50	22.36	1:3.4

Table S3: Elemental Analysis of MoS_x/rGO samples

Note:

Elements: N - Nitrogen; C - Carbon; H - Hydrogen; O - Oxygen; S - Sulfur; Mo - Molybdenum.


^a Weight percentage of Mo = 100 % - (wt% of C + wt% of N + wt% of H + wt% of O + wt% of S)

 $^{\rm b}$ Weight percentage of MoS_x = wt% of Mo + wt% of S

^c Weight percentage of rGO = wt% of C + wt% of O

$$\frac{\text{wt\% of x/AW of }X}{\sum_{i=1}^{n} (\text{wt\% of i}/\text{AW of i})}, AW = atomic weight}$$

^e Atomic ratio of Mo:S = $\frac{at\% \text{ of Mo}}{at\% \text{ of S}}$

Figure S9. Rate Performance at varied current rates and representative galvanostatic charge/discharge curves of Li-ion half cells with the cathode made of (a, b) $MoS_2/rGO-600 (0.88 \text{ mg})$, (c, d) $MoS_2/rGO-325 (1.44 \text{ mg})$, (e, f) $MoS_2/rGO-250 (0.82 \text{ mg})$ and (g, h) MoS_3/rGO intermediate material (1.76 mg). Panels (a), (c) and (e) have the same legend as panel (g).

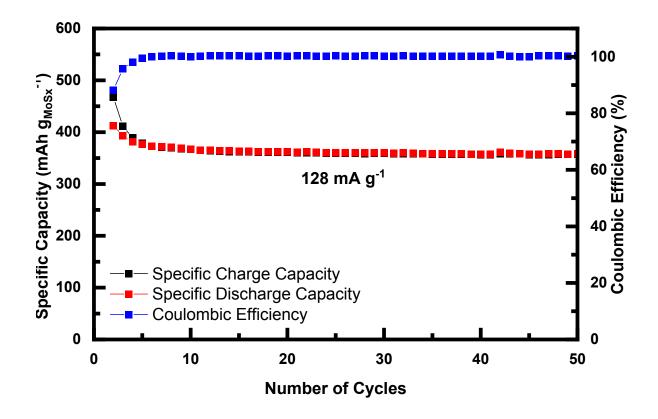


Figure S 10. Long term stability test of Li ion half cells with anode made of $MoS_2/rGO-600$.

Calculation of the Coulombic efficiency of battery tests:

Coulombic Efficiency of MoSx in LIB = $\frac{Specific Disharge Capacity}{Specific Charge Capacity} * 100 \rightarrow (1)$

Calculation of the specific capacity of MoS_x/rGO samples in battery tests:

Specific capacity of $MoSx = \frac{measured \ capacity}{Total \ Mass \ of \ hybrid \ x \ (wt\% \ of \ MoSx)} \rightarrow (2)$

Discussion on rGO contribution to the Li-ion storage capacity:

The small contribution from rGO can be deducted from the specific capacity. As shown in Table S3, the stabilized specific capacity at 100 μ A charge/discharge current is about 73, 86, 111 and 53 mAh g_{rGO}^{-1} for the corresponding control samples rGO-600, rGO-325, rGO-250 and rGO-intermediate. After deducting these contributions based on the wt% of rGO by equations below Table S3, the specific capacity attributed to MoS_x is adjusted to 499, 540, 411 and 467 mAh g_{MoSx}^{-1} for MoS₂/rGO-600, MoS₂/rGO-325, MoS₂/rGO-250 and MoS₃/rGO-intermediate, respectively. The contribution by rGO is only 3.9%, 5.7%, 8.0% and 5.1% in MoS₂/rGO-600, MoS₂/rGO-325, MoS₂/rGO-250 and moS₃/rGO-intermediate, respectively. These small corrections are insignificant to the conclusions in the main manuscript.

T	al	b	l
---	----	---	---

Sample	Specific Capacity of MoSx (mAh/g _{MoSx}) ^a	Specific Capacity of rGO (mAh/g _{rGO}) ^b	(wt% of rGO /wt% of MoSx) ^c	Corrected Specific Capacity ^d (mAh/g _{MoSx})	Relative Contribution of rGO ^e	e S4 Esti
MoS ₂ /rGO-600	519	73	0.27	499	3.9	mati
MoS ₂ /rGO-325	573	86	0.38	540	5.7	on o
MoS ₂ /rGO-250	446	111	0.32	411	8.0	cont
MoS ₃ /rGO- intermediate	492	53	0.48	467	5.1	ibut
		1				on to

the specific capacity by rGO and $\mbox{MoS}_x\mbox{ in LIB}$

Note:

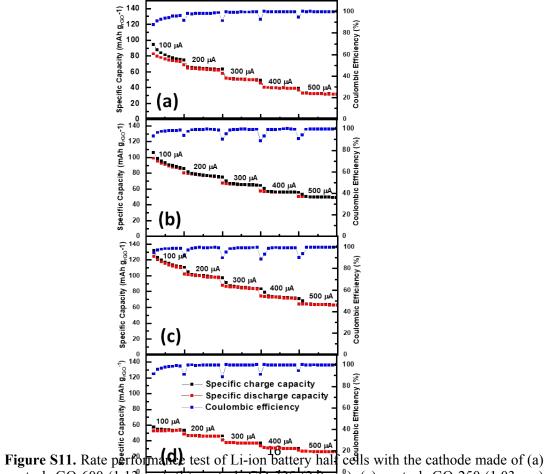
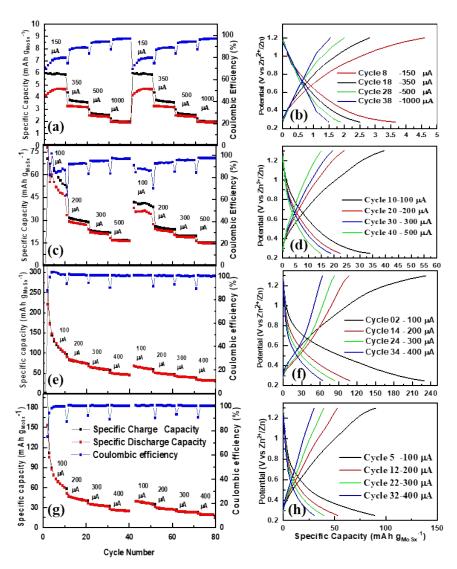
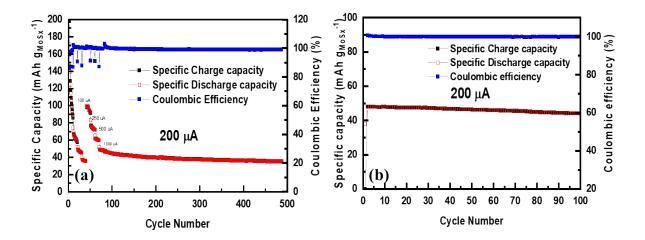
- ^a Based on the 10th cycle at 100 mA in Figure S8.
- ^b Based on the 10th cycle at 100 mA in Figure S10.
- ^c Based on the values from Table S2.

^d Corrected specific capacity = (Specific capacity of MoS_x) - [(Specific capacity of rGO) * ($\frac{wt\% of rGO}{wt\% of MoS x}$]

> Specific Capacity of MoSx – Corrected Specific capacity Specific Capacity of MoSx

^e Relative contribution of rGO =

*100

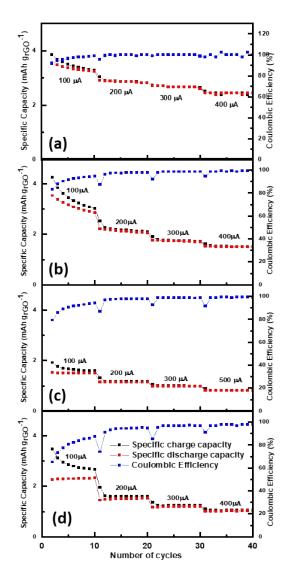

Figure S11. Rate performable test of L1-10n battery half cells with the cathode made of (a) control rGO-600 (1.13 mg), (b) confrol rGQ-325₄₀(2.0 mg), (c) control rGO-250 (1.03 mg) and (d) control rGO-intermediate ($H^m 29$ fifg). Panels (a), (b) and (c) follow the same legend as panel (d).

Figure S12. Galvanostatic charge-discharge curves and the rate performance of Zn-ion battery halfcells with the cathode made of (a, b) $MoS_2/rGO-600 (0.87 \text{ mg})$, (c, d) $MoS_2/rGO-325 (1.36 \text{ mg})$, (e, f) $MoS_2/rGO-250(1.28 \text{ mg})$, and (g, h) MoS_3/rGO intermediate hybrid material (0.88 mg). Panels (a), (c) and (e) follow same legend as panel (g).

Figure S13. The cycle stability test of Zn-ion battery half-cells with the cathode made of (a) $MoS_2/rGO-250$ (2.16 mg) and (b) the MoS_3/rGO intermediate material (0.88 mg). The charge/discharge was carried out at 0.25 - 1.30 V vs. $Zn^{2+/}Zn$.

Figure S14. Rate performance test of Zn ion battery half cells with the cathode made of (a) control rGO-600 (1.38 mg) (b) control rGO-325 (2.0 mg) (c) control sample-250 (0.90 mg) (d) control rGO-intermediate (1.50 mg). Panels (a), (b) and (c) follow same legend as panel (d).