Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

# **Supporting Information**

## SnNb<sub>2</sub>O<sub>6</sub> nanosheets for electrocatalytic NRR: dual-active-center

### mechanism of Nb<sub>3c</sub> and Sn<sub>4c</sub>-Nb<sub>5c</sub> dimer

Xiaotian Li<sup>1#</sup>, Ye Tian<sup>2#</sup>, Xiaomiao Wang<sup>2</sup>, Yali Guo<sup>1</sup>, Ke Chu<sup>1\*</sup>

<sup>1</sup> School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070,

China

<sup>2</sup> Department of Physics, College of Science, Hebei North University, Zhangjiakou 075000, Hebei, China

\*Corresponding author. E-mail address: chukelut@163.com (K. Chu)

<sup>#</sup> These authors contributed equally to this work.

#### **Experimental Section**

#### Synthesis of SnNb<sub>2</sub>O<sub>6</sub>

All the chemicals are of analytical grade and used as received.  $SnNb_2O_6$  nanosheets were prepared by a two-step hydrothermal approach based on a reported method with a slight modification[1]. Briefly, 0.5 g of Nb<sub>2</sub>O<sub>5</sub> and 2.24 g of KOH were dissolved in 30 mL of deionized water under stirring for 10 min, which were hydrothermally treated in a Teflon-lined stainless-steel autoclave for 36 h. Afterwards, 0.42 g of  $SnCl_2 \cdot 2H_2O$  was added into the autoclave and the pH value was adjusted to 3 by HCl under vigorous stirring. The above mixed solution was secondly hydrothermally treated in a Teflon-lined stainless-steel autoclave for 36 h. After cooling to room temperature, the obtained  $SnNb_2O_6$  were washed with deionized water and ethanol several times, and dried at 60 °C overnight.

#### **Electrochemical experiments**

Electrochemical measurements were carried out on a CHI-760E electrochemical workstation using a conventional three-electrode cell[2]. The catalyst coated on carbon cloth (CC) was used as the working electrode, Ag/AgCl (saturated KCl) electrode was used as the reference electrode, and graphite rod was used as the counter electrode. All potentials were referenced to reversible hydrogen electrode (RHE) on the basis of  $E_{\text{RHE}}$  (V)= $E_{\text{Ag/AgCl}}$ +0.197+0.059×pH. The CC (1 × 1 cm<sup>2</sup>) was pretreated by soaking it in 0.5 M H<sub>2</sub>SO<sub>4</sub> for 12 h, and then washed with deionized water several times and dried in air. The working electrode was fabricated by coating 20  $\mu$ L of the catalyst ink onto the pretreated CC (0.2 mg cm<sup>-2</sup>) and dried in the air. The catalyst ink was fabricated by ultrasonically dispersing 1 mg of the catalyst in 100 µL of ethyl alcohol containing 5 µL of Nafion (5 wt%). The NRR tests were performed using an H-type two-compartment electrochemical cell separated by a Nafion 211 membrane. The Nafion membrane was pretreated by boiling it in 5% H<sub>2</sub>O<sub>2</sub> solution for 1 h, 0.5 M H<sub>2</sub>SO<sub>4</sub> for 1 h and deionized water for 1 h in turn. During each electrolysis, ultra-high-purity N2 gas (99.999%) was continuously purged into the cathodic chamber at a flow rate of 20 mL min<sup>-1</sup>. After each NRR electrolysis,

the produced  $NH_3$  and possible  $N_2H_4$  were quantitatively determined by the indophenol blue method[3], and approach of Watt and Chrisp[4], respectively. The detailed procedures for determining the concentrations of  $NH_3$  and possible  $N_2H_4$  have been provided in our previous works [5-7].

#### Characterizations

X-ray diffraction (XRD) pattern recorded was on а Rigaku D/max 2400 diffractometer. X-ray photoelectron spectroscopy (XPS) analysis was conducted on a PHI 5702 spectrometer. Transmission electron microscopy (TEM), high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) and high-resolution transmission electron microscopy (HRTEM) were performed on a Tecnai G<sup>2</sup> F20 microscope. <sup>1</sup>H nuclear magnetic resonance (NMR) measurements were carried out on a 500 MHz Bruker superconductingmagnet NMR spectrometer. The UV-vis absorbance measurements were recorded on a MAPADA P5 spectrophotometer.

#### **Calculation details**

Spin-polarized density functional theory (DFT) calculations were conducted using a Cambridge sequential total energy package (CASTEP) [8]. The Perdew– Burke–Ernzerhof (PBE) generalized gradient approximation (GGA) functional was used for the exchange-correlation potential [8]. A cutoff energy of 650 eV is chosen and the convergence criteria of force and energy were set to be 0.01 eV Å<sup>-1</sup> and  $1.0 \times 10^{-5}$  eV, respectively. The seven-layered SnNb<sub>2</sub>O<sub>6</sub> slab with a 2×2 supercell were constructed for slab modeling and a vacuum space of 15 Å was applied to all calculations to avoid interactions between periodic images.

The Gibbs free energy ( $\Delta G$ , 298 K) of reaction steps is calculated by [9]:

$$\Delta G = \Delta E + \Delta Z P E - T \Delta S \tag{1}$$

where  $\Delta E$  is the adsorption energy,  $\Delta ZPE$  is the zero point energy difference and  $T\Delta S$  is the entropy difference between the gas phase and adsorbed state. The entropies of free gases were acquired from the NIST database.



Fig. S1. (a) UV-vis absorption spectra of indophenol assays with  $NH_4Cl$  after incubated for 2 h at ambient conditions. (b) Calibration curve used for calculation of  $NH_3$  concentrations.



Fig. S2. (a) UV-vis absorption spectra of  $N_2H_4$  assays after incubated for 20 min at ambient conditions. (b) Calibration curve used for calculation of  $N_2H_4$  concentrations.



Fig. S3. FE of H<sub>2</sub> production at various potentials over SnNb<sub>2</sub>O<sub>6</sub>.

The FE for H<sub>2</sub> yield can be calculated by [10]

FE (%) = 
$$\frac{2 \times F \times n}{Q} \times 100\%$$
 (2)

where Q is the quantity of applied electricity. F is the Faraday constant, n is the actually produced H<sub>2</sub> (mol) obtained by gas chromatography (GC-2014C, Shimadzu) which is directly connected to the cathodic compartment[11]. Based on the FE data for H<sub>2</sub> production with the FE for NH<sub>3</sub> selectivity (Fig. 2d), the unaccounted values is possibly derived from the dynamic hydrogen adsorption on the catalyst, the capacitance of the support and the uncontrollable experimental error[12].



Fig. S4. (a) XRD pattern of  $Nb_2O_5$  nanosheets (inset: TEM image). (b) XRD pattern of  $SnO_2$  nanosheets (inset: TEM image). (c) XRD pattern of SnO nanosheets (inset: TEM image). The  $Nb_2O_5$  nanosheets,  $SnO_2$  nanosheets and SnO nanosheets were prepared based on the reported methods of [13], [14] and [15], respectively.



Fig. S5. UV-vis absorption spectra of working electrolytes after 2 h of electrolysis on  $SnNb_2O_6$  at -0.3 V (vs. RHE) in N<sub>2</sub>-saturated solution, Ar-saturated solutions, N<sub>2</sub>-saturated solution at open circuit and N<sub>2</sub>-saturated solution on pristine CC.



Fig. S6. TEM image of SnNb<sub>2</sub>O<sub>6</sub> after stability test.



Fig. S7. XRD pattern of SnNb<sub>2</sub>O<sub>6</sub> after stability test.



Fig. S8. XPS spectra of  $SnNb_2O_6$  nanosheets after stability test: (a) Sn3d; (b) Nd3d; (c) O1s.



 $\textcircled{O} \ Nb \ \textcircled{O} \ \textcircled{O} \ Nb$  Fig. S9. Optimized structure of N<sub>2</sub> adsorption on Nb<sub>6c</sub> site of SnNb<sub>2</sub>O<sub>6</sub> (311) .

| Catalyst                                       | Electrolyte                              | Determination<br>method   | Optimum<br>Potential<br>(V Vs RHE) | NH₃ yield<br>(μg h <sup>-1</sup> mg <sup>-1</sup> ) | FE<br>(%)    | Ref.         |
|------------------------------------------------|------------------------------------------|---------------------------|------------------------------------|-----------------------------------------------------|--------------|--------------|
| Pd/C                                           | 0.1 M<br>PBS                             | Indophenol blue method    | 0.1                                | 4.5                                                 | 8.2          | [16]         |
| Mo single atoms                                | 0.1 M<br>KOH                             | Indophenol blue method    | -0.3                               | 34                                                  | 14.6         | [17]         |
| Ru single<br>atoms/NPC                         | 0.05 M<br>H <sub>2</sub> SO <sub>4</sub> | Indophenol blue method    | -0.2                               | 120.9                                               | 29.6         | [18]         |
| MoO <sub>3</sub> nanosheets                    | 0.1 M HCl                                | Indophenol blue method    | -0.5                               | 29.43                                               | 1.9          | [19]         |
| Mo <sub>2</sub> C/C                            | 0.5 M<br>Li <sub>2</sub> SO <sub>4</sub> | Nessler's reagent method  | -0.3                               | 11.3                                                | 7.8          | [20]         |
| BiVO <sub>4</sub> with<br>oxygen vacancies     | 0.2 M Na <sub>2</sub> SO <sub>4</sub>    | Indophenol blue method    | -0.5                               | 8.6                                                 | 10.4         | [21]         |
| MoS <sub>2</sub> with Li-S<br>Interactions     | 0.1 M<br>Li <sub>2</sub> SO <sub>4</sub> | Indophenol blue method    | -0.2                               | 43.4                                                | 9.81         | [22]         |
| S-doped carbon<br>nanospheres                  | 0.1 M Na <sub>2</sub> SO <sub>4</sub>    | Indophenol blue method    | -0.7                               | 19.07                                               | 7.47         | [23]         |
| Cubic sub-micron<br>SnO <sub>2</sub> particles | 0.1 M Na <sub>2</sub> SO <sub>4</sub>    | Indophenol blue method    | -0.7                               | 4.03                                                | 2.17         | [24]         |
| F-doped SnO <sub>2</sub>                       | 0.1 M Na <sub>2</sub> SO <sub>4</sub>    | Indophenol blue method    | -0.45                              | 19.3                                                | 8.6          | [25]         |
| Fe-doped SnO <sub>2</sub>                      | 0.1 M HCl                                | Indophenol blue method    | -0.3                               | 82.7                                                | 20.4         | [26]         |
| SnO <sub>2</sub> /RGO                          | 0.1 M Na <sub>2</sub> SO <sub>4</sub>    | Indophenol blue method    | -0.5                               | 25.6                                                | 7.1          | [27]         |
| Nb <sub>2</sub> O <sub>5</sub> nanofibers      | 0.1 M HCl                                | Indophenol blue method    | -0.55                              | 43.6                                                | 9.26         | [12]         |
| NbO <sub>2</sub><br>nanoparticles              | 0.05 M<br>H <sub>2</sub> SO <sub>4</sub> | Indophenol blue method    | -0.65                              | 11.6                                                | 32<br>(-0.6) | [28]         |
| SnNb <sub>2</sub> O <sub>6</sub>               | 0.5 M LiClO <sub>4</sub>                 | Indophenol<br>blue method | -0.3                               | 53.1                                                | 17.6         | This<br>work |

Table S1. Comparison of optimum NH<sub>3</sub> yield and Faradic efficiency (FE) for recently reported state-of-the-art NRR electrocatalysts at ambient conditions

#### **Supplementary references**

- [1]. Z. Zhang, D. Jiang, D. Li, M. He and M. Chen, *Appl. Catal. B*, 2016, **183**, 113-123.
- [2]. Q. Li, Y. Cheng, X. Li, Y. Guo and K. Chu, *Chem. Commun.*, 2020, **56**, 13009-13012.
- [3]. D. Zhu, L. Zhang, R. E. Ruther and R. J. Hamers, *Nat. Mater.*, 2013, **12**, 836.
- [4]. G. W. Watt and J. D. Chrisp, *Anal. Chem.*, 1952, **24**, 2006-2008.
- [5]. W. Gu, Y. Guo, Q. Li, Y. Tian and K. Chu, ACS Appl. Mater. Inter., 2020, 12, 37258-

37264.

- [6]. K. Chu, J. Wang, Y. P. Liu, Q. Q. Li and Y. L. Guo, J. Mater. Chem. A, 2020, 8, 7117-7124.
- [7]. K. Chu, Y. P. Liu, Y. B. Li, Y. L. Guo and Y. Tian, ACS Appl. Mater. Inter., 2020, 12, 7081-7090.
- [8]. S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson and M. C. Payne, Z. Kristallogr., 2005, 220, 567-570.
- [9]. A. A. Peterson, *Energy Environ. Sci.*, 2010, **3**, 1311-1315.
- [10]. X. Li, T. Li, Y. Ma, Q. Wei, W. Qiu, H. Guo, X. Shi, P. Zhang, A. M. Asiri and L. Chen, *Adv. Energy. Mater.*, 2018, 8, 1801357.
- [11]. J. Q. Tian, Q. Liu, A. M. Asiri and X. P. Sun, J. Am. Chem. Soc., 2014, 136, 7587-7590.
- [12]. J. Han, Z. Liu, Y. Ma, G. Cui, F. Xie, F. Wang, Y. Wu, S. Gao, Y. Xu and X. Sun, *Nano Energy*, 2018, **52**, 264-270.
- [13]. H. Luo, M. Wei and K. Wei, Mater. Chem. Phys., 2010, 120, 6-9.
- [14]. F. Li, L. Chen, G. P. Knowles, D. R. MacFarlane and J. Zhang, Angew. Chem. Int. Edit., 2017, 56, 505-509.
- [15]. H. Zhang, Q. He, F. Wei, Y. Tan, Y. Jiang, G. Zheng, G. Ding and Z. Jiao, *Mater. Lett.*, 2014, **120**, 200-203.
- [16]. J. Wang, L. Yu, L. Hu, G. Chen, H. Xin and X. Feng, Nat. Commun., 2018, 9, 1795.
- [17]. L. Han, X. Liu, J. Chen, R. Lin, H. Liu, F. Lu, S. Bak, Z. Liang, S. Zhao and E. Stavitski, *Angew. Chem. Int. Edit.*, 2018, 58, 2321-2325.
- [18]. Z. Geng, Y. Liu, X. Kong, P. Li, K. Li, Z. Liu, J. Du, M. Shu, R. Si and J. Zeng, Adv. Mater., 2018, 30, 1803498.
- [19]. J. Han, X. Ji, X. Ren, G. Cui, L. Li, F. Xie, H. Wang, B. Li and X. Sun, J. Mater. Chem. A, 2018, 6, 12974-12977.
- [20]. H. Cheng, L. X. Ding, G. F. Chen, L. Zhang, J. Xue and H. Wang, Adv. Mater., 2018, 30, 1803694.
- [21]. J. X. Yao, D. Bao, Q. Zhang, M. M. Shi, Y. Wang, R. Gao, J. M. Yan and Q. Jiang, *Small Methods*, 2018, 3, 1800333.
- [22]. Y. Liu, M. Han, Q. Xiong, S. Zhang, C. Zhao, W. Gong, G. Wang, H. Zhang and H. Zhao, *Adv. Energy. Mater.*, 2019, 9, 1803935.
- [23]. L. Xia, X. Wu, Y. Wang, Z. Niu, Q. Liu, T. Li, X. Shi, A. M. Asiri and X. Sun, Small Methods, 2018, 3, 1800251.
- [24]. L. Zhang, X. Ren, Y. Luo, X. Shi, A. M. Asiri, T. S. Li and X.-P. Sun, Chem. Commun., 2018.
- [25]. Y. P. Liu, Y. B. Li, H. Zhang and K. Chu, *Inorg. Chem.*, 2019, 58, 10424-10431.
- [26]. L. Zhang, M. Cong, X. Ding, Y. Jin, F. Xu, Y. Wang, L. Chen and L. Zhang, Angew. Chem. Int. Edit., 2020, 132, 10980-10985.
- [27]. K. Chu, Y. Liu, Y. Li, J. Wang and H. Zhang, ACS Appl. Mater. Inter., 2019, 11, 31806-31815.
- [28]. L. Huang, J. Wu, P. Han, A. M. Al-Enizi, T. M. Almutairi, L. Zhang and G. Zheng, Small Methods, 2019, 3, 1800386.