Electronic Supplementary Information for

A photocatalyst foam for superior visible-light photocatalytic

hydrogen evolution

Zhaoting Liu,^{a,b,c} Fang Wang,^{a,b,c} Zhengguo Zhang^{a,b,c} and Shixiong Min*^{a,b,c}

^a School of Chemistry and Chemical Engineering, North Minzu University, Yinchuan,

750021, P. R. China.

^b Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, P. R. China.

^c Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan 750021, P. R. China.

*Corresponding authors: <u>sxmin@nun.edu.cn</u>

Fig. S1 SEM image of the NF-P and the corresponding EDX elemental maps (Ni and

Fig. S2 SEM images of the pristine CdS particles.

Fig. S3 SEM images of the CdS/NF, where the CdS particles were directly grown on the surfaces of the pristine NF.

Fig. S4 SEM images of CdS/NF-P-0.1 (a, b), CdS/NF-P-0.15 (c, d), CdS/NF-P-0.2 (e, f) and CdS/NF-P-0.3 (g, h).

Fig. S5 Time courses of photocatalytic H_2 evolution on CdS/NF-P-0.25 under light irradiation of different wavelengths.

Table S1 Comparison of catalytic H_2 evolution activity of CdS/NF-P photocatalystfoam with different CdS-based photocatalysts in semiconductor-based photocatalytic H_2 evolution systems.

	2			
Photocatalyst	Reaction conditions	Light source	H ₂ evolution rate (mmol $h^{-1} g_{catalyst}^{-1}$)	Ref.
CS/CdS	0.5 M Na ₂ S and 0.5 M Na ₂ SO ₃	300W Xe lamp (>420 nm)	3.88	1
CdS _{0.5} Se _{0.5} -DETA	Lactic acid (10 vol.%)	300W Xe lamp (>420 nm)	8.11	2
MoS ₂ /CdS	Lactic acid (10 vol.%)	300W Xe lamp (>420 nm)	5.24	3
Black TiO ₂ /CdS	0.35 M Na ₂ S and 0.25 M Na ₂ SO ₃	300W Xe lamp (>420 nm)	6	4
Ni ₂ P/CdS	Lactic acid (10 vol.%)	300W Xe lamp (>420 nm)	1.18	5
ZnO/CdS/MoS ₂	0.35 M Na ₂ S and 0.25 M Na ₂ SO ₃	300W Xe lamp (>420 nm)	10.24	6
Mo ₂ C/CdS	0.5 M Na ₂ S and 0.5 M Na ₂ SO ₃	300W Xe lamp (>420 nm)	1.6	7
SiC/CdS	1M Na ₂ S and 1M Na ₂ SO ₃	300W Xe lamp (>420 nm)	0.6	8
Pt/CdS	Lactic acid (10 vol.%)	300W Xe lamp (>420 nm)	24.15	9
Ti ₃ C ₂ /CdS	Lactic acid (25 vol.%)	300W Xe lamp (>420 nm)	11.3	10
CdS/NF-P	Lactic acid (10 vol.%)	10W LED (380nm≤λ≤780 nm)	4.82	This work

Fig. S6 (a) XPS survey spectrum and (b) Ni 2p, (c) Cd 3d, and (d) S 2p XPS spectra of the CdS/NF-P after 35 h of photocatalytic HER.

References

- 1. Q. Wang, J. Lian, Q. Ma, S. Zhang and H. Huang, Cat. Today., 2016, 3, 662-668.
- 2. Y. Huo, Z. Li and Y. Yang, Sustainable Energy Fuels., 2019, 3, 3550-3560.
- 3. X. Zhou, J. Huang, H. Zhang and W. Tu, *Int. J. Hydrogen. Energy.*, 2016, **33**, 14758-14767.
- 4. R. Gao, L. Xiong, X. Jia and L. Mao, *Int. J. Hydrogen. Energy.*, 2016, **27**, 14369-14383.
- 5. Z. Wang, Z. Qi, X. Fan and X. Fu, Appl. Catal. B. Environ., 2021, 281, 119443.
- 6. Y. Jia, Z. Wang, X. Qiao and S. Li, Chem. Eng. J., 2017, 424, 13038.
- 7. B. Ma, H. Xu, K. Lin and C. Li, ChemSusChem., 2016, 9, 820-824.
- 8. Y. Peng, Z. Guo and W. Yuan, J. Mater. Chem. A., 2014, 2, 6296-6300.
- 9. S. Z. Liu, Z. Guo and J. Lin, Sustainable Energy Fuels., 2019, 3, 1048-1054.
- 10. J. Ran, G. Gao, F. Li and S. Qiao, Nat. Commun., 2017, 8, 13907-13917.