SUPPORTING INFORMATION

Biomass-derived carbon electrodes for supercapacitors and hybrid solar cells: towards sustainable photo-supercapacitors

Nilanka M. Keppetipola, Céline Olivier, Thierry Toupance, * and Ludmila Cojocaru* Institut des Sciences Moléculaires, UMR 5255 CNRS, Université de Bordeaux, 351 Cours de la Libération, F-33405 Talence Cedex, France

1. EVALUATION METHODS OF SUPERCAPACITORS

Commonly used performance characteristics of SCs include specific capacitance (C_{sp} , F g⁻¹), resistance (R, Ω), cell voltage (V, V), specific energy (E, Wh kg⁻¹), power density (P, W kg⁻¹) and life cycles.¹ Several instruments and various test modes are carried out to assess and characterize the electrochemical performance of SCs. Cyclic voltammetry (CV) and constant current charge/discharge (CD) are two methods frequently used and, in general with these methods, the device response is analyzed with respect to voltage, current and time. At the same time, electrochemical impedance spectroscopy (EIS) analysis gives electrical impedance of the device as a function of frequency. Each instrument can evaluate its targeted performance characteristics by using above parameters. Furthermore, each test can be performed on both SCs materials (i.e. electrode material and electrolyte) or on complete SC device. However, there is a significant difference between the measurement setups. A two-electrode setup gives the device performance of complete SCs, while a three-electrode setup provides the electrochemical properties of the electrode material.² Formulas commonly used for the evaluation of the SC performances using different techniques are summarized in Table S1.

Techniques	Device specific capacitance (C_D) , two electrodes system		Single electrode specific capacitance (C_S) , three electrodes system	Ref.	
Cyclic voltammetry (CV)	$C_D = \frac{Q}{2 \times scan rate \times m_D \times \Delta V}$		$C_{S} = \frac{Q}{2 \times scan rate \times m_{S} \times \Delta V}$	4,5	
Constant current charge/disch arge (CD) method	$C_{D} = \frac{l}{m_{D} \times (\Delta V / \Delta t)}$ Specific Energy (E): $E = \frac{C_{D} \times (\Delta V)^{2}}{2 \times 3.6}$ Power Density (P): $P = \frac{E \times 3600}{\Delta t}$	$C_{S} = \frac{I}{m_{S} \times (\Delta V / \Delta t)}$			
*Symmetric two electrodes SCs;					
1) Series conne	1) Series connection capacitance:				
$\frac{1}{C_D} = \frac{1}{C1} + \frac{1}{C2}; C_1 = C_2 = C_S; C_S = 2C_D;$					
2) Counting mass of both electrodes:				2,4,5	
$m_D = 2m_{s;}$					
3) Theoretical relation of single and device capacitance:					
$C_S = 4C_D$					

Table S1 Evaluation of supercapacitors using different techniques.

Multiplication by factor "4" is to adjust the capacitance considering series connection of two capacitors and mass of two electrodes.

Cyclic voltammetry (CV):

- Q = Integrated area of the cyclic voltammetry curve
- ΔV = Potential range
- $m_D = Total mass of active material for both electrodes$
- $m_S = Mass of active material for single electrode$

Constant current charge/discharge (CD):

I = Applied current

 $m_D = Total mass of active material for both electrodes$ $m_S = Mass of active material for single electrode$ $\Delta V / \Delta t = Slope of the discharge curve$ $\Delta t = Discharging time$

 ΔV = Potential change during the discharging

2. EVALUATION METHODS OF SOLAR CELLS

The common technique for solar cell evaluation is the current-voltage measurement where a voltage bias (V, V) is applied to the devices under illumination and a photo-current (I, mA cm⁻²) is measured.⁹ From the resulting curve, three important values are extracted: short-circuit current density (J_{sc}), open-circuit voltage (V_{oc} , V) and fill factor (FF) as expressed in Equation 1. Using these parameters, the power conversion efficiency (PCE, %) is calculated following Equation 2.

 $FF = \frac{V_{mp} \times J_{mp}}{V_{oc} \times J_{sc}}$ Equation 1 $PCE = \frac{V_{oc} \times J_{sc} \times FF}{P_{max}} \times 100\%$ Equation 2

with V_{mp} and J_{mp} are the voltage and the current density at the maximum power.

While the I-V curve measurement is a standard method for solar cell evaluation without hysteresis, this technique is no longer reliable to accurately calculate the PCEs of devices showing hysteresis such PSCs. In this case, several approaches have been proposed, reporting PCEs from I-V curves recorded at different scan speed, showing hysteresis index, steady-state efficiency, and more recently determining PCE at maximum power point (MPP).

^{10,11} The MPP method, which consists in measuring the maximum power-output of the device over time until the device is stabilized, is widely used. MPP is performed using Perturb and Observe algorithms that continuously adjust the voltage to maximize the power output. This technique is recommended for PSCs showing hysteresis and is still being improved considering the unstable behavior of PSCs.

3. EVALUATION METHODS OF INTEGRATED DEVICES

In the evaluation of integrated device, solar cell PCE is separately evaluated using I-V curves and stored energy of the SC is calculated by photo-charging or discharging measurements. Complete charging and discharging cycles are performed to calculate the energy conversion and storage efficiency (η_{ECSE}) also called "overall efficiency" ($\eta_{overall}$) and "storage efficiency" ($\eta_{Storage}$).¹²

During the charging process, the output power of the solar cell varies during the course of the charging process. This modifies the conversion and storage efficiencies over time. Therefore, to evaluate the photo-charging time which gives maximum energy conversion and storage at constant incident light, several charge-discharge cycles should be performed. From this method, optimum charging time which gives maximum $\eta_{ECSE(C)}$ can be obtained. After charging, the SC is discharged with a constant current or known load under dark conditions.¹² The energy conversion and storage efficiency after discharging $\eta_{ECSE(D)}$ of the photo-capacitor is calculated by the ratio of total energy discharged over the energy falling on the solar cell during photo-charging time under light.¹³ The storage efficiency $\eta_{Storage}$ of the integrated device is given by the ratio between $\eta_{ECSE(D)}$ and PCE of the solar cell or, in some cases, by the ratio between $E_{Discharge}$ and E_{Charge} (Table S2).¹³⁻¹⁷

Regime	Calculation of energy	Efficiencies	Ref.
Charging	$E_{Charge} = \int_{0}^{t} V_{c} \times I_{c} \times dt$ extracted from charging curves	$\eta_{ECSE(C)} = \frac{E_{Charge}}{P_{Light} \times \Delta t \times A_S} \times 100\%$ Plot of $\eta_{ECSE(C)}$ vs Δt to find the maximum overall efficiency during photo-charging.	12
Discharging	$C = \frac{I}{\Delta V / \Delta t}$ $E_{Discharge} = \frac{1}{2}C \times (\Delta V)^{2}$ extracted from the discharge curves $E_{Discharge} = \int_{t_{c}}^{t_{d}} V_{D} \times I_{D} \times dt$	$\eta_{ECSE(D)} = \frac{E_{Discharge}}{P_{Light} \times \Delta t \times A_{S}} \times 100\%$ $\eta_{Storage} = \frac{\eta_{ECSE(D)}}{PCE} \times 100\%$ $\eta_{Storage} = \frac{E_{Discharge}}{E} \times 100\%$	12-14
	extracted from discharging curves	L' Charge	

 Table S2 Evaluation of the photo-storage devices performances.

Evaluation of solar cell:

 P_{Light} = Incident light intensity PCE = Photo-conversion efficiency

Evaluation of direct integrated device:

- C = Capacitance of the supercacitor
- I = Discharging current
- E_{Charge} = Total energy during the charging
- $E_{Discharge}$ = Total energy during the discharging
- $\eta_{ECSE(C)}$ = Energy conversion storage efficiency

during the charging

 $\eta_{ECSE(D)}$ = Energy conversion storage efficiency during the discharging

 $\eta_{Storage}$ = Storage efficiency

 A_{S} = Active area of the solar cell

 V_c = Instantaneous charging volatge

 V_D = Instantaneous discharging volatge

 I_c = Instantaneous charging current

 I_D = Instantaneous discharging current

 t_c = time when the supercapacitor is completely charged by solar cell under 1Sun, light ON

 t_d = time when the supercapacitor is completely discharged in the dark, light OFF

Abbreviations	Full name		
ADEKA-1	Carbazole/hexyl-functionalized oligothiophene/trimethoxysilyl-anchor dye		
LEG4	3-{6-{4-[bis(2',4'-dibutyloxybiphenyl-4- yl)amino]phenyl}-4,4-dihexyl-cyclopenta-[2,1- b:3,4-b']dithiophene-2-yl}-2-cyanoacrylic acid		
BMIM BF ₄	1-Butyl-3-methylimidazolium - tetrafluoroborate		
EMIM BF ₄	1-ethyl-3-methylimidazolium - tetrafluoroborate		
TEMA BF ₄	Triehylmethylammonium - tetrafluoroborate		
TEA BF ₄	Tetraethyl ammonium tetrafluoroborate		
TEOS	Tetraethyl orthosilicate		
MPPyFSI	1-methyl-1-propy-pyrrolizinium bis(fluorosulfonyl)imide		
AN	Acetonitrile		
PC	Propylene carbonate		
PVA	Polyvinylalcohol		
spiro-OMeTAD	2,2',7,7'-Tetrakis[N,N-di(4- methoxyphenyl)amino]-9,9'-spirobifluorene		
Y123	3-{6-{4-[bis(2',4'-dihexyloxybiphenyl-4- yl)amino]phenyl}-4,4-dihexyl-cyclopenta-[2,1- b:3,4-b']dithiophene-2-yl}-2-cyanoacrylic acid		
N719	Di-tetrabutylammonium cis- bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'- dicarboxylato)ruthenium(II)		
N3	cis-bis(isothiocyanato)bis(2,2'-bipyridyl-4,4'- dicarboxylato)ruthenium(II)		
SM-315	Push-pull porphyrin dye		
PVDF	Polyvinylidene fluoride		
NMP	N-Methyl-2-pyrrolidone		
Pyr ₁₄ TFSI	1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide		
EMII-PMII	1-ethyl-3-methylimidazolium iodide		
	1-propyl-3-methylimidazolium iodide		

 Table S3 Abbreviations and full name of the materials cited on this review paper.

ITO-PEN	Indium doped tin oxide-polyethylene naphthalate			
FTO	Fluorine doped tin oxide			
Polyurethane:RTIL	Polyurethane:			
	1-butyl-2,3-di-methylimidazolium bis(trifluoromethanesulfonyl)imide			
PEM	Poly(ethyl methacrylate)			
PEG	Poly(ethylene glycol)			
PEO	Poly(ethylene oxide)			
PEDOT:PSS	Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate			
PC ₆₁ BM	[6,6]-Phenyl-C61-butyric acid methyl ester			
PANI	Polyaniline			
РММА	Polymethyl methacrylate			
РРу	Polypyrrole			
РІ	Polyimide			
CH ₃ NH ₃ PbI ₃ (MAPbI ₃)	Methylammonium lead triiodide			
CH ₃ NH ₃ PbBr ₃ (MAPbBr ₃)	Methylammonium lead tribromide			
FAPbI ₃	Formamidinium lead triiodide			
$Cs_{0.05}(FA_{0.83}MA_{0.17})_{0.95}Pb(I_{0.83}Br_{0.17})_{3}$	Mixed cation lead halide perovskite			
CH ₃ NH ₃ I	Methylammonium iodide			
CH ₃ O(CH ₂) ₂ CN	Methoxypropionitrile			

Table S4 Integrated devices with information about the structure, efficiencies of individual solar cell and areal capacitance of storage devices.

DSCs structure:	Inter-layer	$\begin{array}{c} PCE (\%), \\ (active & area, \\ cm^2) \end{array}$	Storage device structure	Areal capacitance mF cm ⁻²)	Ref.
FTO/mp- TiO ₂ /N719/PVDF:I- :I ₃ ^{-/} MWCNT	MWCNT	6.10 (0.36)	MWCNT/PVA- H ₃ PO ₄ /MWCNT	262.3 (calculated)	15
Ti/mp-TiO ₂ /N719/I ⁻ :I ₃ ⁻ /Pt	Pt	1.38 (0.22)	G/NaCl/G	25.7 (calculated)	16
Ti/mp-TiO ₂ /N719/I ⁻ :I ₃ ⁻ /Pt	Pt	4.33 (2.5)	AC/NaCl/AC	36.4 (calculated)	17
ITO-PEN/mp- TiO ₂ /N719/I ⁻ :I ₃ ⁻ /Pt	Pt	2.8 (0.16)	rGO/Polyurethan e:RTIL/rGO	0.14	18
PSCs structure:			Storage device structure:		
FTO/c-TiO ₂ /mp- TiO ₂ / MAPbI ₃ /spiro- OMeTAD/Au	Au	12.6 (0.06)	MWCNT/PPy/ MWCNT	572	16
FTO/c-TiO ₂ /mp- TiO ₂ /ZrO ₂ /MAPbI ₃ / PEDOT:C	PEDOT:C	6.37 (0.07)	PEDOT:C/LiCl O4/PEDOT:C	12-8.5	19
FTO/c- TiO ₂ /MWCNT/MAP bI ₃ /PMMA	PANI:CN Ts	2.476 (1.0)	PANI- CNT/PVA:H ₂ SO ₄ /PANI-CNT	422	20
FTO/c-TiO ₂ /mp- TiO ₂ /MAPbI ₃ /C	С	7.79 (0.071)	MnO ₂ :C/PVA- LiCl/C	61.01	21
FTO/c-TiO ₂ / mp- TiO ₂ /CsPbBr ₃ /nano- C	nano-C	6.1 (0.1)	nano-C/Silica gel/nano-C	33.8	22

Figure S1. Chemical structure of the dyes (ADEKA-1, LEG-4, N3, N719, SM-315) and hole transport material (spiro-OMeTAD) cited in this review paper.

1) M. A. Scibioh and B. Viswanathan, *Materials for Supercapacitor Applications*, 2020, 315–372.

2) S. Zhang and N. Pan, Adv. Energy Mater., 2015, 5, 1401401.

3) N. H. N. Azman, M. S. Mamat @ Mat Nazir, L. H. Ngee and Y. Sulaiman, *Int. J. Energy Res.*, 2018., **42**, 2104-2116.

4) P. Yang and W. Mai, Nano Energy, 2014, 8, 274–290.

5) M. D. Stoller and R. S. Ruoff, Energy Environ. Sci., 2010, 3, 1294-1301.

6) M. Rajesh, R. Manikandan, S. Park, B. C. Kim, W. J. Cho, K. H. Yu and C. J. Raj, *Int. J. Energy Res.*, 2020, 44, 8591-8605.

7) Z. Liang, H. Xia, H. Liu, L. Zhang, J. Zhou, H. Li and W. Xie, *Results Phys.*, 2019, **15**, 102586.

8) J. Yu, N. Fu, J. Zhao, R. Liu, F. Li, Y. Du and Z. Yang, *ACS Omega*, 2019, **4**, 15904-15911.

9) K. Takagi, S. Magaino, H. Saito, T. Aoki and D. Aoki, J. Photochem. Photobiol. C, 2013, 14, 1–12.

10) Y. Wang, X. Liu, Z. Zhou, P. Ru, H. Chen, X. Yang and L. Han, *Adv. Mater.*, 2019, **31**, 1803231.

11) L. Cojocaru, S. Uchida, K. Tamaki, P. V. V. Jayaweera, S. Kaneko, J. Nakazaki, T. Kubo and H. Segawa, *Sci. Rep.*, 2017, **7**, 11790.

12) B. P. Lechene, R. Clerc and A. C. Arias, *Sol. Energy Mater. Sol. Cells*, 2017, **172**, 202–212.

13) A. Gurung, K. Chen, R. Khan, S. S. Abdulkarim, G. Varnekar, R. Pathak, R. Naderi and Q. Qiao, *Adv. Energy Mater.*, 2017, **7**, 1602105.

14) X. Xu, S. Li, H. Zhang, Y. Shen, S. M. Zakeeruddin, M. Graetzel, Y. B. Cheng and M. Wang, *ACS Nano*, 2015, **9**, 1782–1787.

15) Z. Yang, L. Li, Y. Luo, R. He, L. Qiu, H. Lin and H. Peng, *J. Mater. Chem. A*, 2013, **1**, 954–958.

16) A. Scalia, F. Bella, A. Lamberti, S. Bianco, C. Gerbaldi, E. Tresso and C. F. Pirri, J.

Power Sources, 2017, 359, 311–321.

17) A. Scalia, F. Bella, A. Lamberti, C. Gerbaldi and E. Tresso, *Energy*, 2019, **166**, 789–795.

18) P. Dong, M. T. F. Rodrigues, J. Zhang, R. S. Borges, K. Kalaga, A. L. M. Reddy, G. G. Silva, P. M. Ajayan and J. Lou, *Nano Energy*, 2017, 42, 181–186.

19) J. Xu, Z. Ku, Y. Zhang, D. Chao and H. J. Fan, Adv. Mater. Technol., 2016, 1, 1600074.

20) R. Liu, C. Liu and S. Fan, J. Mater. Chem. A, 2017, 5, 23078-23084.

21) Z. Liu, Y. Zhong, B. Sun, X. Liu, J. Han, T. Shi, Z. Tang and G. Liao, *ACS Appl. Mater. Interfaces*, 2017, **9**, 22361–22368.

22) J. Liang, G. Zhu, C. Wang, P. Zhao, Y. Wang, Y. Hu, L. Ma, Z. Tie, J. Liu and Z. Jin, *Nano Energy*, 2018, **52**, 239–245.