Supporting information

Few-layered ultrasmall MoS₂ nanosheets cathode material for high performance rechargeable aluminum-ion battery

Qiang Zhang, Qianfeng Liu and Erdong Wang*

Division of Fuel Cell & Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics,

Chinese Academy of Sciences. Dalian 116023, China.

*Corresponding author Erdong Wang E-mail: edwang@dicp.ac.cn.

Experiment Section

Preparation of the samples

The M-MoS₂ was prepared through microwave-assisted precursor synthesis method combined with subsequent calcination. Typically, 30 mL of PEG-400 was added into a 300 mL three-necked flask, and then 0.5004 g Sodium molybdate dehydrate and 0.6200 g Thiourea were added with vigorous stirring for 10 min. Afterwards, the mixed solution were transferred to a multipurpose microwave chemical synthesizer X-8000, following with microwave irradiation 800 W for 6 min under 185°C with vigorous stirring. After natural cooling, the product was washed thoroughly with ethanol and water several times via centrifugation. Then, the resultant product was subjected to drying at 60 °C for 6 h. Finally, the M-MoS₂ was obtained after calcination at 800 °C for 2 h under argon atmosphere. For comparison, the H-MoS₂ and S-MoS₂ samples were also synthesized by hydrothermal method and solvothermal method at 185 °C for 20 h using deionized water and PEG-400 as solvent, respectively.

Characterization

The crystal characteristics of the M-MoS₂, H-MoS₂ and S-MoS₂ samples were characterized using X-ray diffraction (XRD) on an X-ray 6000 diffractometer with the 2 θ angle region from 10° to 70° at a scan rate of 6° min⁻¹. The morphological features of the samples were determined by scanning electronic microscopy (SEM), transmission electron microscopy (TEM) and highresolution TEM (HR-TEM) which were carried out using JSM-7500F (5 kV) and JEM-2100F (JEOL, 200 kV) instruments. N₂ adsorption–desorption isotherms were obtained using a NOVA 2200e system. X-ray photoelectron spectrometer (XPS) analyses were performed using an ESCALAB 250 instrument.

Electrochemical testing

2032-type coin cells were assembled in an argon filled glovebox to estimate the electrochemical performances of the M-MoS₂, H-MoS₂ and S-MoS₂ samples. The active material, acetylene black and poly(vinylidene fluoride) (PVDF) were added into the N-methylpyrrolidone (NMP) solvent dispersant with a weight ratio of 8:1:1 to prepare cathode slurries. The positive electrodes were prepared by coating the slurries onto Ta foil (1.5cm²) and dried at 60 °C for 12 h in a vacuum. The Al metal (30µm) was used as the counter electrode and the Whatman glass fiber (GF/C) was used as the separator to assemble the cells. A room-temperature ionic liquid electrolyte was made by mixing anhydrous aluminum chloride (AlCl₃) and 1-ethyl-3-methylimidazolium chloride ([EMIm]Cl) at a molar ratio of 1.3:1 in a glove box filled with high purity argon gas. A LAND-CT2001A battery test system was used to test the chargedischarge curves in a voltage range of 0.01-2.0 V. The specific capacities at different current densities were calculated based on the mass of active materials (about 1.2 mg cm⁻²). Cyclic voltammetry (CV) curves were obtained in a voltage range of 0.01–2.0 V at a scan rate of 0.2 mV s⁻¹. The electrochemical impedance spectra (EIS) were measured in the frequency range of 0.1 Hz–1 MHz with a 5 mV amplitude. The CV and EIS measurements were performed on a CHI660D electrochemical workstation.

Fig. S2 The SEM image and its related elemental mapping of S and Mo images of the $M-MoS_2$.

Mo

2μm

Fig. S4 The CV curves at 0.5 mV s⁻¹ for the first two cycles of (a) S-MoS₂ and (b) H-MoS₂.

Fig. S5 The XRD pattern of M-MoS₂ after discharge to 0.6V (a, b) and after charge to 1.15V (c, d).

Fig. S6 The TEM (a,b), HR-TEM (c) and EDS (d) images of M-MoS₂ after 100 cycles.

Sample	Specific capacity (mAh g ⁻¹)	Current density	Reference	Journal
		(mAg^{-1})		
G-SnS ₂	70 after 100 cycles	200	14	Adv. Mater. (2017)
Ni ₃ S ₂ @G	60 after 100 cycles	100	22	Adv. Energy Mater.
				(2016)
CuS@C	90 after 100 cycles	20	23	ACS Nano (2017)
Co ₃ S ₄	100 after 150	50	24	Nano Energy (2019)
	cycles			
MoS ₂ @C	126.6 after 200	100	25	ACS Sustainable Chem. Eng.
	cycles			(2019)
Bulk MoS ₂	66.7 after 100	40	26	ACS Appl. Mater.
	cycles			Interfaces (2018)
M-MoS ₂	73 after 150cycles	100	-	Our Work

Table 1 The comparison list of Sulfide-based cathode materials for AIBs.