Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

Supplementary Material for

Designed ZnS/CdS/rGO composite nanosheet photocatalyst with multi-interface electron transfer for high conversion of CO₂

Mengyang Xu^{a,b}, Haopeng Jiang^{a,b}, Xin Li^a, Ming Gao^a, Qi Liu^a, Huiqin Wang^{c*}, Pengwei Huo^{a*}, S

ongtao Chen^{b,d}

^aInstitute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China

^bGreen Catalysis Center, College of Chemistry, Zhengzhou University, 450001, China

^cSchool of energy and power engineering, Jiangsu University, Zhenjiang 212013, PR China

^dCollege of Municipal and Environmental Engineering, Henan University of Urban Construction, ping ding shan, 467000, China

^{*} Corresponding author Tel/Fax: +86-511-88790885

E-mail: huopw@ujs.edu.cn, hqwang@ujs.edu.cn

1. Materials

Zinc nitrate hexahydrate (Zn(NO₃)₂·6H₂O), ethylenediamine (C₂H₈N₂), thiourea (CH₄N₂S), cadmium nitrate tetrahydrate (Cd(NO₃)₂·4H₂O), Sodium sulfide nonahydrate (Na₂S·9H₂O), ethanol (C₂H₅OH), potassium permanganate (KMnO₄), graphite powder, sodium nitrate (NaNO₃), hydrogen peroxide (H₂O₂) (30%), sulfuric acid (H₂SO₄), triethanolamine (TEOA). All the chemicals are of analytical grade that procured from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) and used without further processing.

2. Photoelectrochemical Test

Electrochemical impedance spectroscopy (EIS), linear sweep voltammograms (LSV) and transient photocurrent responses of the catalysts were tested on an electrochemical workstation (CHI760E). The electrochemical system uses a standard three-electrode quartz battery, with 0.5 M Na₂SO₄ as the electrolyte solution, a Pt wire as the counter electrode, and a saturated calomel electrode (SCE) as the reference electrode. The preparation process of the working electrode is: 0.1 g of as-synthesized samples, 0.01 g of PVP (k = 5800) and 30 μ L of oleic acid were put into 3 mL of ethanol to mixture uniform. Then, the suspension was spin-coated on FTO conducting glass (1 cm×1 cm). Electrochemical impedance spectroscopy (EIS) was performed in a 0.5 M Na₂SO₄ solution with a frequency range from 0.1 Hz to 100 kHz at 0.5 V with an ac amplitude of 5 mV. The transient photocurrent uses a 300W Xe-lamp as light source.

Fig. S1. The XRD images of rGO.

Fig. S2. The SEM images of ZnS (a) and ZnS/CdS (b).

Fig. S3. The DRS spectra and band gap energy of all ZnS@CdS/rGO samples

Fig. S4. CO₂ adsorption ability of ZnS, ZnS/CdS and ZnS/CdS/rGO, respectively.

Fig. S5. Contact angle test of ZnS, CdS, ZnS@CdS and ZnS@CdS/rGO photocatalyst.

Fig. S6. Brunauer-Emmett-Teller patterns of ZnS@CdS/1%rGO, ZnS@CdS/3%rGO, ZnS@CdS/5%rGO and ZnS@CdS/10%rGO sample (a) and corresponding pore-size distribution curves (b).

Fig. S7. The Mott-Schottky plot of ZnS (a) and the Mott-Schottky plot of CdS (b). **Table 1** Band gap energy of ZnS/CdS/1%rGO, ZnS/CdS/3%rGO, ZnS/CdS/5%rGO and ZnS/CdS/10%rGO photocatalysts.

Fig. S1. The XRD images of rGO.

Fig. S2. The SEM images of ZnS (a) and ZnS/CdS (b).

Fig. S3. The DRS spectra and band gap energy of all ZnS@CdS/rGO samples.

Fig. S4. CO₂ adsorption ability of ZnS, ZnS/CdS and ZnS/CdS/rGO, respectively.

Fig. S5. Contact angle test of ZnS, CdS, ZnS@CdS and ZnS@CdS/rGO photocatalyst.

Fig. S6. Brunauer-Emmett-Teller patterns of ZnS@CdS/1%rGO, ZnS@CdS/3%rGO, ZnS@CdS/5%rGO and ZnS@CdS/10%rGO sample (a) and corresponding pore-size distribution curves (b).

Fig. S7. The Mott-Schottky plot of ZnS (a) and the Mott-Schottky plot of CdS (b).

		-	-	
Sample name	ZnS/CdS/1%rGO	ZnS/CdS/3%rGO	ZnS/CdS/5%rGO	ZnS/CdS/10%rGO
E _g (eV)	2.34	2.22	2.15	2.10

 $\textbf{Table 1} \text{ Band gap energy of } ZnS/CdS/1\%rGO, ZnS/CdS/3\%rGO, ZnS/CdS/5\%rGO \text{ and } Band gap energy of } ZnS/CdS/1\%rGO, ZnS/CdS/3\%rGO, ZnS/CdS/5\%rGO \text{ and } Band gap energy of } ZnS/CdS/1\%rGO, ZnS/CdS/3\%rGO, ZnS/CdS/5\%rGO \text{ and } Band gap energy of } ZnS/CdS/1\%rGO, ZnS/CdS/3\%rGO, ZnS/CdS/5\%rGO \text{ and } Band gap energy of } ZnS/CdS/1\%rGO, ZnS/CdS/3\%rGO, ZnS/CdS/5\%rGO \text{ and } Band gap energy of } ZnS/CdS/1\%rGO, ZnS/CdS/3\%rGO, ZnS/CdS/5\%rGO \text{ and } Band gap energy of } ZnS/CdS/1\%rGO, ZnS/CdS/5\%rGO \text{ and } Band gap energy of } ZnS/CdS/1\%rGO, ZnS/CdS/5\%rGO \text{ and } Band gap energy energy energy end } ZnS/CdS/1\%rGO, ZnS/CdS/5\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap energy end } ZnS/CdS/1\%rGO \text{ and } Band gap end } ZnS/CdS/1\%rGO \text{ an$

$ZnS/CdS/10\% rGO\ photocatalysts.$