Vacancy-Induced High Activity of MoS₂ Monolayer for CO Electroreduction: A

Computational Study

Dongxu Jiao,^a Yu Tian,^c Yuejie Liu,^{b*} Qinghai Cai,^{a,b,d} Jingxiang Zhao,^{a,*}

^a College of Chemistry and Chemical Engineering, and Key Laboratory of Photonic

and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University,

Harbin, 150025, China

^b Modern Experiment Center, Harbin Normal University, Harbin, 150025, China

^c Institute for Interdisciplinary Quantum Information Technology, Jilin Engineering

Normal University, Changchun 130052, China

^d Heilongjiang Province Collaborative Innovation Center of Cold Region Ecological

Safety, Harbin 150025, China

*To whom correspondence should be addressed. Email: zjx1103@hotmail.com (YL) ; xjz_hmily@163.com or zhaojingxiang@hrbnu.edu.cn (JZ) ; Dongxu Jiao and Yu Tian contribute equally tothis work.

Fig. S1. STM image simulation in the constant current mode under a bias voltage of - 0.5 V.

Fig. S2. Variation range of the formation energy (E_f) of $V_{S_1}V_{S2}$, V_{2S} and V_{3S_2} .

Fig. S3. The computed adsorption energies (E_{ads} , eV), distances between Mo and C atom (d_{Mo-C} , Å)

Fig. S4. The obtained free energy profiles of COR on (a) V_S , (b) V_{S2} and (c) V_{2S} .

Fig. S5. The involed COR intermediates on V_{3S} .

Elementary step	Free energy change (ΔG)
$CO(g) \rightarrow ^{*}CO$	-0.35
$^{*}CO + H^{+} + e^{-} \rightarrow ^{*}COH$	-0.26
$^{*}CO + H^{+} + e^{-} \rightarrow ^{*}CHO$	0.69
$*COH + H^+ + e^- \rightarrow *CHOH$	0.39
$^{*}\mathrm{COH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{C} + \mathrm{H}_{2}\mathrm{O}$	0.51
$^{*}\mathrm{CHOH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH} + \mathrm{H}_{2}\mathrm{O}$	-0.91
$^{*}\mathrm{CHOH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2}\mathrm{OH}$	1.01
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{2} + \mathrm{H}_{2}\mathrm{O}$	-0.20
$^{*}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow \mathrm{CH}_{3}\mathrm{OH}^{*}$	-1.31
$^{*}\mathrm{CH}_{2} + \mathrm{H}^{+} + \mathrm{e}^{-} \rightarrow ^{*}\mathrm{CH}_{3}$	0.63
$^{*}\mathrm{CH}_{3}+\mathrm{H}^{+}+\mathrm{e}^{-}\!\rightarrow\mathrm{CH}_{4}\left(\mathrm{g}\right)$	-1.03

Table S1. The computed free energy changes of each possible elementary step duringthe electrochemical reduction of CO to CH_4 on the V_{38} monolayer.

Fig. S6. Gibbs free energy (ΔG) diagram for COR on V_{3S} with solvent effect.

Fig. S7. The considered structures of defective MoS_2 monolayers with different three S vacancies and the relative energy differences (ΔE), in which the line defect V_{3S} was employed as a reference, and the dotted lines represent S vacancy.

Fig. S8. The optimized adsorption configuration of (a) CO molecule and (b) H^* species on V_{3S} monolayer.

Fig. S9. The optimized adsorption configuration of H_2O molecule on V_{3S} monolayer.

Fig. S10. The computed transition state (T-s) for H_2O dissociation on hollow unsaturated Mo sites of the V_{3S} surface.

Fig. S11. The computed transition state (T-s) for CO hydroenation to COH^* via the Heyrovsky-type mechanism on the V_{3S} surface.