Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2021

## **Electronic Supporting Information**

## Renewable N-doped microporous carbons from walnut shell for CO<sub>2</sub> capture

## and conversion

Xianzhao Shao, \* Yujia Zhang, Xinyi Miao, Wei Wang, Zhifeng Liu, Quan Liu, Tianlei

Zhang, Jianwei Ji, and Xiaohui Ji \*

Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science,

Shaanxi University of Technology, Hanzhong 723001, People's Republic of China

\*Corresponding authors:

1. Tel: +86-15191607196, Email: xianzhaoshao@snut.edu.cn (Xianzhao Shao);

2. Tel: +86-13474316569, Email: slgjxh@163.com (Xiaohui Ji)



Figure S1. XRD patterns of different carbon materials.



**Figure S2.** Linear fitting of the experimental data presenting a plot of  $CO_2$  adsorption capacity vs. the micropore volume of pore size (a) < 0.68 nm, (b) <0.73 nm, (c) <0.84 nm, and (d) < 1.02 nm.



**Figure S3.** Cyclic study of CO<sub>2</sub> adsorption for WSNC-3 at 298K.



Figure S4. Isosteric heat of CO<sub>2</sub> adsorption on WSCN-3 and WSC-3.



Figure S5. Initial slope calculation for  $CO_2$  and  $N_2$  isotherms collected at 298K. (a) WSNC-3, (b) WSCN-3, (c) WSC-3.



Figure S6.  $CO_2$  adsorption isotherms obtained at 273 K and 298 K of Ag/WSNC-3



Figure S7. EDS mapping of Ag/WSNC-3



Figure S8. Histogram of Ag particle size distribution.



**Figure S9.** Recyclability test of Ag/WSNC-3. Reaction conditions: 1.0 mmol substrate; Ag was 0.1 mol% based on substrate; DBU, 1.0 mmol; CO<sub>2</sub> 1 MPa; CH<sub>3</sub>CN, 3 mL; 30 °C, 12 h. Yields were determined by <sup>1</sup>H NMR.

**Table S1.** Carboxylative Cyclization of 2-methyl-3-butyn-2-ol with CO2 overAg/WSNC-3<sup>a</sup>

|                 | $OH$ + $CO_2 - \frac{Ag/V}{DBU}$ | WSNC-3<br>, CH <sub>3</sub> CN |                      | -                     |
|-----------------|----------------------------------|--------------------------------|----------------------|-----------------------|
| Entry           | Catalyst                         | Times/h                        | Yield/% <sup>b</sup> | TOF/h <sup>-1</sup> c |
| 1               | No Ag/WSNC-3 and DBU             | 12                             | <1                   | -                     |
| 2               | No Ag/WSNC-3                     | 12                             | 24                   | -                     |
| 3               | WSNC-3 instead of Ag/WSNC-3      | 12                             | 25                   | -                     |
| 4               | Ag/WSNC-3                        | 12                             | 95                   | 79                    |
| 5               | Ag/AC                            | 12                             | 62                   | 52                    |
| 6               | Ag/WSC-3                         | 12                             | 67                   | 56                    |
| 7               | Ag/WSNC-3                        | 1                              | 41                   | 410                   |
| 8               | Ag/WSNC-3                        | 6                              | 74                   | 123                   |
| 9 <sup>d</sup>  | Ag/WSNC-3                        | 12                             | 43                   | 36                    |
| 10              | Ag/WSNC-3                        | 0.5                            | 21                   | 420                   |
| 11              | Ag/WSNC-3                        | 16                             | 99                   | 62                    |
| 12 e            | Ag/WSNC-3                        | 1                              | 48                   | 480                   |
| $13^{\rm f}$    | Ag/WSNC-3                        | 1                              | 59                   | 590                   |
| 14 <sup>g</sup> | Ag/WSNC-3                        | 1                              | 67                   | 670                   |
| $15^{\rm f}$    | Ag/WSNC-3                        | 12                             | 76                   | 63                    |

<sup>a</sup> Reaction condition: 1.0 mmol substrate (2-methyl-3-butyn-2-ol); Ag/WSNC-3, Ag was 0.1 mol% based on substrate; DBU, 1.0 mmol; CO<sub>2</sub> 1 MPa; CH<sub>3</sub>CN, 3 mL; 30 °C, 12 h. <sup>b</sup> Determined by <sup>1</sup>H NMR. <sup>c</sup> TOF = [mol product obtained]/[(total mol metal) × (reaction time)]. <sup>d</sup> CO<sub>2</sub> 1 atm. <sup>e</sup> 40 °C. <sup>f</sup> 50 °C. <sup>g</sup> 60 °C. <sup>f</sup> Flue gas (10% CO<sub>2</sub>, 90% N<sub>2</sub>) instead of pure CO<sub>2</sub>.

## Figure S10 to S15: <sup>1</sup>H and <sup>13</sup>C NMR spectra of the products of carboxylative cyclization of propargyl alcohols with CO<sub>2</sub>.



Figure S10. <sup>1</sup>H and <sup>13</sup>C NMR spectra of the 4,4-dimethyl-5-methylene-1,3-dioxolan-2-one



dioxolan-2-one



**Figure S12.** <sup>1</sup>H and <sup>13</sup>C NMR spectra of the 4-methyl-5-methylene-4- isopropyl-1,3dioxolan-2-one



Figure S13. <sup>1</sup>H and <sup>13</sup>C NMR spectra of the 4-methyl-5-methylene-4- isobutyl-1,3dioxolan-2-one



Figure S14. <sup>1</sup>H and <sup>13</sup>C NMR spectra of the 4-diethyl-5-methylene-1,3-dioxolan-2one



Figure S15. <sup>1</sup>H and <sup>13</sup>C NMR spectra of the 4-cyclohexyl-5-methylene-1,3-dioxolan-2-one