## Nanoflower Ni(OH)<sub>2</sub> grown *in-situ* on Ni foam for high-performance supercapacitor electrode materials

Xuerui Yi<sup>a</sup>, Huapeng Sun<sup>a</sup>, Neil Robertson<sup>\*a</sup> and Caroline Kirk<sup>\*a</sup>

| label          | Mole ration<br>(Ni source: urea: NH4F)    | Additive | Temperature | Hours | XRD | Mass of active<br>material on an<br>electrode(mg/cm²) | Capacitance<br>(CV/5mv s <sup>.</sup> ) | Capacitance(charging-<br>discharging/ 3 mA g·) |
|----------------|-------------------------------------------|----------|-------------|-------|-----|-------------------------------------------------------|-----------------------------------------|------------------------------------------------|
| αlpha-1        | 1:2<br>(0.712g NiCl2-0.360g urea)         | no       | 200         | 12h   | α   | 4.8                                                   | 1018                                    | 2593                                           |
| αlpha-2        | 1:2<br>(0.8724g Ni(NO3)2-0.360g urea)     | no       | 200         | 12h   | α   | 2.4                                                   | 1061                                    | 2814                                           |
| αlpha-3        | 1:2<br>(0.8724g Ni(NO3)2-0.360g urea)     | no       | 200         | 5h    | α   | 1.7                                                   | 816                                     | 656                                            |
| beta-1         | 1:2:2<br>(0.8724g Ni(NO3)2-0.360g urea)   | NH4F     | 200         | 5h    | β   | 1.3                                                   | 253                                     | 394                                            |
| beta <b>-2</b> | 1:5:2<br>(0.6979g Ni(NO3)2-0.7212g urea)  | NH₄F     | 200         | 5h    | β   | 1.7                                                   | 413                                     | 620                                            |
| beta-3         | 1:4:0.7<br>(0.1452g Ni(NO3)2-0.120g urea) | NH4F     | 200         | 5h    | β   | 0.8                                                   | 735                                     | 1011                                           |

Table S1 Samples prepared under different experimental conditions.

| α-Ni(OH)2 | 2theta | 12.5  | 24.9  | 33.7  | 59.6  |       |       |
|-----------|--------|-------|-------|-------|-------|-------|-------|
|           | hkl    | (003) | (006) | (101) | (110) |       |       |
| β-Ni(OH)2 | 2theta | 19.6  | 33.4  | 38.8  | 52.2  | 59.2  | 62.7  |
|           | hkl    | (001) | (100) | (101) | (102) | (003) | (111) |

Table S2 List of main observed reflection (2-theta) and hkl indices for  $\alpha$ -Ni(OH)<sub>2</sub> and  $\beta$ -Ni(OH)<sub>2</sub> of this work.



Figure S1 (a)The crystal structure of  $\alpha$ -Ni(OH)<sub>2</sub>. (b) The crystal structure of  $\beta$ -Ni(OH)<sub>2</sub>. (Green spheres: Ni<sup>2+</sup>; Red spheres: O<sup>2-</sup>; White spheres: H<sup>+</sup>)



Figure S2 (a) PXRD pattern of  $\beta$ -Ni(OH)<sub>2</sub> compared to the standard pattern for ICDD 14-117. (b) PXRD patterns of  $\alpha$ -Ni(OH)<sub>2</sub> to the standard pattern ICDD 38-715.



Figure S3 (a)CV curves of samples obtained from different experimental conditions at the 5 mv s<sup>-1</sup>. (b) Galvanostatic charge-discharge curves of samples obtained from different experimental conditions at the 3 A g<sup>-1</sup>.



Figure S4 (a-b) SEM images of  $\alpha$ -Ni(OH)<sub>2</sub> on Ni foam; (c-d) SEM images of  $\beta$ -Ni(OH)<sub>2</sub> on Ni foam; (e) digital photographs of Ni foam before (right) and after (left) hydrothermal treatment.



Figure S5 (a-d) SEM images of the  $\alpha$ -2 sample on nickel foam after electrochemical test.

| α-Ni(OH)2         | 3 A/g | 4 A/g | 6 A/g | 8 A/g | 10 A/g | 20 A/g |
|-------------------|-------|-------|-------|-------|--------|--------|
| Capacitance (F/g) | 2814  | 2340  | 2022  | 1805  | 1642   | 1096   |
| Capacity (C/g)    | 736   | 596   | 499   | 442   | 394    | 237    |

Table S3 the specific capacitance and capacity of  $\alpha$ -Ni(OH)<sub>2</sub> from charge-discharge processes.

| β-Ni(OH)2         | 3 A/g | 4 A/g | 6 A/g | 8 A/g | 10 A/g | 20 A/g |
|-------------------|-------|-------|-------|-------|--------|--------|
| Capacitance (F/g) | 1011  | 926   | 871   | 787   | 724    | 539    |
| Capacity (C/g)    | 230   | 261   | 243   | 218   | 199    | 138    |

Table S4 the specific capacitance of  $\beta$ -Ni(OH)<sub>2</sub> from the cyclic voltammetry.

| Sample                    | Methods                     | Sample Specific capacitance(F g <sup>-1</sup> ) | Current load or scan rate | Reference |
|---------------------------|-----------------------------|-------------------------------------------------|---------------------------|-----------|
| α-Ni(OH)2                 | Hydrothermal                | 1715                                            | 5 mV s                    | 1         |
| α-Ni(OH)2                 | precipitation               | 805                                             | 5 mV s                    | 2         |
| α-Ni(OH)2                 | precipitation               | 1328                                            | 1 A g                     | 3         |
| α-Ni(OH)2                 | precipitation               | 2222                                            | 1 A g                     | 4         |
| α-Ni(OH)2                 | Electrochemical preparation | 2301                                            | 1 A g                     | 5         |
| Zn doped is α-<br>Ni(OH)2 | Electrodepositio<br>n       | 860                                             | 10 mA cm <sup>2-</sup>    | 6         |
| α-<br>Ni(OH)2/graphene    | microwave<br>heating        | 1735                                            | 1 mV s                    | 7         |
| α-Ni(OH)2                 | Hydrothermal                | 2814                                            | 3 A g                     | This work |

Table S5 The specific capacitance of  $\alpha$ -Ni(OH)<sub>2</sub> from references applied in supercapacitors.

## **References:**

- 1. Jiang, H., Zhao, T., Li, C. and Ma, J., 2011. Hierarchical self-assembly of ultrathin nickel hydroxide nanoflakes for high-performance supercapacitors. *Journal of Materials Chemistry*, *21*(11), pp.3818-3823.
- Lee, J.W., Ko, J.M. and Kim, J.D., 2011. Hierarchical microspheres based on α-Ni (OH) 2 nanosheets intercalated with different anions: synthesis, anion exchange, and effect of intercalated anions on electrochemical capacitance. *The Journal of Physical Chemistry C*, 115(39), pp.19445-19454.
- 3. Wu, M.S. and Huang, K.C., 2011. Fabrication of nickel hydroxide electrodes with open-ended hexagonal nanotube arrays for high capacitance supercapacitors. *Chemical Communications*, *47*(44), pp.12122-12124.
- 4. Hu, G., Li, C. and Gong, H., 2010. Capacitance decay of nanoporous nickel hydroxide. *Journal of Power Sources*, *195*(19), pp.6977-6981.
- Aghazadeh, M., Ghaemi, M., Sabour, B. and Dalvand, S., 2014. Electrochemical preparation of α-Ni (OH) 2 ultrafine nanoparticles for high-performance supercapacitors. *Journal of Solid State Electrochemistry*, *18*(6), pp.1569-1584.
- Aghazadeh, M., Ghaemi, M., Sabour, B. and Dalvand, S., 2014. Electrochemical preparation of α-Ni (OH) 2 ultrafine nanoparticles for high-performance supercapacitors. *Journal of Solid State Electrochemistry*, *18*(6), pp.1569-1584.
- Yan, J., Fan, Z., Sun, W., Ning, G., Wei, T., Zhang, Q., Zhang, R., Zhi, L. and Wei, F., 2012. Advanced asymmetric supercapacitors based on Ni (OH) 2/graphene and porous graphene electrodes with high energy density. *Advanced Functional Materials*, 22(12), pp.2632-2641.