Supporting Information

Designing 2D nickle hydroxide@graphene nanosheets composites to efficiently confine sulfur for highly stable lithium-sulfur batteries

Pan Liu^{a,b}, Yuruo Qi^{a,b}, Sidra Jamil^{a,b}, Fangyuan Xiao^{a,b}, Wei Zhong^{a,b}, Shu-Juan

Bao^{a,b,*}, Maowen Xu^{a,b,*}

^aLaboratory of Luminescence Analysis and Molecular Sensing (Southwest University),

Ministry of Education, School of Materials and Energy, Southwest University, Chong

qing 400715, PR China

^b Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, So

uthwest University, Chongqing 400715, PR China

*Corresponding author. *E-mail address:* baoshj@swu.edu.cn; xumaowen@swu.edu.cn

1. Figures

Fig. S1. Schematic illustration of the synthesis of Ni(OH)₂@GR.

Fig. S2. FESEM images of Ni(OH)₂@GR at 5 h refluxing times.

Fig. S3. FESEM images of Ni(OH)₂@GR at 20 h refluxing times.

Fig. S4. (a-b) XRD patten of GO and GR; (c-d) XPS spectra of C 1S for GO and GR.

Fig. S5. Thermogravimetric (TG) analysis of pristine Ni(OH)2 and Ni(OH)2@GR.

Fig. S6. (a) XRD patten of pristine Ni(OH)₂, (b) FESEM image XRD patten of pristine Ni(OH)₂.

Fig. S7. FESEM image of GR.

Fig. S8. XPS spectra of C 1S of Ni(OH)₂@GR@S.

Fig. S9. Static adsorption experiments of Li_2S_6 with pristine Ni(OH)₂ and GR.

Fig. S10. (a-b) CV curves of Ni(OH)@S and GR@Swith different scan rates.

Fig. S11. (a-b) the relationship between Ip and $v^{1/2}$ with the different cathode composites.

Fig. S12. XPS spectra of 2p of Ni(OH)₂@GR@S before cycling.

Electrode	Slope	$A_1 D(Li^+) (cm s^{-1})$	$SlopeC_1$	$C_1 D(Li^+) (cm s^{-1})$
	A_1			
Ni(OH)2@GR@S	4.98	1.71×10^{-10}	1.88	2.46 × 10 ⁻¹¹
Pure Ni(OH) ₂ @S	2.15	3.19×10^{-11}	1.08	8.05×10^{-12}
GR@S	2.49	4.28×10^{-12}	1.09	8.20 × 10 ⁻¹²

Table S1. The slope and D(Li⁺) of Ni(OH)₂GR@S, pure Ni(OH)₂@S, GR@S.