Supplementary Information

Understanding the Interplay between Crystal Structure and Charge Transport in Alloyed Lead-free Perovskites

Aleksandra G.Boldyreva,^{a*}, Shijing Sun^b, Polly J. Pierone^c, Filipp Talalaev^d, Janak Thapa^b, Meng-ju Sher^c, Noor Titan Putri Hartono^b, Tonio Buonassisi^b, Pavel A. Troshin^d, and Keith J. Stevenson^a

^{a.} Skolkovo Institute of Science and Technology Nobel street 3, Moscow, 143026, Russia

^{c.} Wesleyan University, Middletown, Connecticut, USA

^{d.} Institute for Problems of Chemical Physics of the Russian Academy of Sciences (ICP RAS), Semenov prospect 1, Chernogolovka, 142432, Moscow region, Russia * Corresponding author: aleksandra.boldyreva@skolkovotech.ru

Table S1. Average P, R, D characteristics of the studied lateral devices (symbols in brackets show standard deviation). Bandgaps were estimated using Tauc plot, * denotes for indirect bandgap.

Material	Dimansio nality	Bandgap (ass)		405 nm			532 nm			650 nm	
		eV	Р%	R mA/W	D Jones	Р%	R mA/W	D Jones	Р%	R mA/W	D Jones
MA Bi I 3 2 9	0D	1.91*	51.4 (8.2)	2.8 (0.0925)	1.8·10 ⁸ (0.0925)	2.15 (48.8)	0.0041 (48.8)	2.4·10 ⁵ (48.8)	-	-	-
MA (Bi Sb) I	0D	1.89*	25 (8.2)	1.3 (0.0925)	8.4·10 ⁷ (0.0925)	3.9 (48.8)	0.0067 (48.8)	4.1·10 ^⁵ (48.8)	-	-	-
MA Sb I 3 2 9	0D	1.91*	314 (8.2)	19 (0.0925)	1.2·10 ⁹ (0.0925)	8.0 (48.8)	0.13 (48.8)	2.6·10 ⁶ (48.8)	4.6 (63.2)	0.4 (0.38)	7.4·10 ⁶ (0.38)
MA Bi (I Br) 3 2 0.6 0.4 9	2D	2.25	3.6 (8.2)	0.16 (0.371)	1·10 ⁷ (0.371)	-	-	-	-	-	-
$MA_{3}(Bi_{0.6}Sb_{0.4})_{2}(I_{0.6}Br_{0.4})_{9}$	2D	2.23	55.3 (8.2)	2.4 (0.371)	1.6·10 ⁸ (0.371)	6.8 (48.8)	0.012 (48.8)	7.3·10 ^⁵ (48.8)	-	-	-
$MA_{3}Sb_{2}(I_{0.6}Br_{0.4})_{9}$	2D	2.28	315 (8.2)	19 (0.0925)	1.2·10 ⁹ (0.0925)	8.9 (48.8)	0.016 (48.8)	1.0·10 ⁶ (48.8)	-	-	-
MA Bi Br	2D	2.74	-	-	-	-	-	-	-	-	-
$MA_{3}(Bi_{0.6}Sb_{0.4})_{2}Br_{9}$	2D	2.71	6.2 (8.2)	0.17 (0.371)	1.1·10 ⁷ (0.371)	-	-	-	-	-	-
MA Sb Br 3 2 9	2D	2.75	58.9 (8.2)	4.2 (0.0925)	2.7·10 ⁸ (0.0925)	-	-	-	-	-	-

^{b.} Massachusetts Institute of Technology, Boston, Massachusetts, USA

Figure S1. SEM images of 3 characteristic samples prepared on quartz showing micrometer size hexagonal grains and the resulting material exhibited the same carrier mobility but improved carrier lifetime.

Table S2. – THz measurements for 2 set of samples, prepared on quartz. (set #1 – bare perovskite solutions, #2– solutions with NH₄SCN additive).

Sample Set #1	THz mobility, cm²/V/s	THz lifetime, ps		
MA ₃ Bi ₂ Br ₉ , (2D)	0.4	8.7		
$MA_3Sb_2Br_9$, (2D)	0.5	4.8		
$MA_{3}(Bi_{0.6}Sb_{0.4})_{2}(I_{0.6}Br0_{.4})_{9}, (2D)$	0.6	6.6		
MA ₃ Bi ₂ I ₉ (0D)	0.3	2.8		
MA ₃ Sb ₂ I ₉ , (0D)	0.4	1.2		
Sample Set #2	THz mobility, cm²/V/s	THz lifetime, ps		
$MA_{3}(Bi_{0.6}Sb_{0.4})_{2}(I_{0.6}Br0_{.4})_{9}, (2D)$	0.4	12		
$MA_3Sb_2Br_9$, (2D)	0.4	10		
MA ₃ Bi ₂ I ₉ (0D)	0.3	9		

Figure S2. THz mobility and lifetime of samples prepared on quartz with the increased grain size, carrier lifetime increased to >9 ps for all samples while carrier mobilities remain the same.

Figure S3. – Relation between laser light intensity and current

Figure S4. IV characteristics and transient photoresponse of Bi- systems (MA3Bi2Br9 did not respond)

Figure S5. IV characteristics and transient photoresponse of Bi-Sb systems

Figure S6. IV characteristics and transient photoresponse of Sb-systems

Figure S7. Change of UV-vis spectra(a) and XRD patern(b) of Bi-rich- systems.

Figure S8. Change of UV-vis spectra(a) and XRD patern(b) Bi-Sb systems.

Figure S9. Change of UV-vis spectra(a) and XRD patern(b) of Sb-rich systems.