Graphene oxide mediated scalable preparation of heterostructured MoS$_2$-MoO$_3$/Graphene nanohybrids for efficient energy storage application

Sunil P. Lonkar$^{1,*}$ and Saeed M. Alhassan$^{2,*}$

$^1$Advanced Materials Research Center (AMRC), Technology Innovation Institute (TII), P.O.Box: 9639, Abu Dhabi, United Arab Emirates
$^2$Department of Chemical Engineering, Khalifa University, P.O box 127788, Abu Dhabi, UAE
E-mail: saeed.alkhazraji@ku.ac.ae; sunil.lonkar@ku.ac.ae
Tel:+971-26075944, Fax: +971-26075200

Materials
Ammonium tetrathiomolybdate [ATTM; (NH$_4$)$_2$MoS$_4$], elemental sulfur, activated carbon (AC), and potassium hydroxide (KOH) were purchased from Sigma-Aldrich and were used as received without further purification.

Characterizations
The structural and morphological characterization of the resulting 3D MoS$_3$/RGO nanohybrids were performed by various sophisticated tools and techniques. The morphology was investigated by scanning electron microscope (SEM, 1540 XB Zeiss equipped with energy dispersive X-ray analysis, EDX) and transmission electron microscopy (TEM, FEI Tecnai G20 with 0.11 nm point resolution and operated at 200 kV using Gatan digital camera). The crystalline structure was elucidated by X-ray diffraction (XRD, Philips X’Pert Pro X-Ray diffractometer equipped with graphite-monochromated Cu K$_\alpha$ radiation at $\lambda = 1.541$ Å, $2\theta = 5-60^\circ$). X-ray photoelectron spectroscopy (XPS) spectra were recorded on SSX-100 system (Surface Science Laboratories, Inc. equipped with a monochromated Al K$_\alpha$ X-ray source, a hemispherical sector analyzer, and a resistive anode detector). The Raman spectroscopy was performed on LabRAM HR (Horiba Scientific) using a 633 nm laser excitation line. The surface property features were studied using BET analysis, N$_2$ physisorption was carried out at liquid N$_2$ temperature with a Micromeritics ASPS 2010 analyzer to examine the porosity and surface area of the hybrids. The samples were pretreated at 100 °C in a high vacuum for 24 h before N$_2$ adsorption.
Electrochemical Measurements

The specific capacitance of the electrodes under materials was calculated by using the GCD data under three-electrode (Csp, F·g⁻¹) was calculated by using the following Eq. S1, respectively:

\[
C_{sp} = \frac{I \Delta t}{m \Delta V}
\]  

(S1)

Where ‘I’ is the discharge current in Ampere (A), ‘\(\Delta t\)’ is the discharge time in seconds (s), m is the active material mass in grams (g), and ‘\(\Delta V\)’ is the working potential window in Volts (V).

To achieve optimal electrochemical performance, the mass ratio of positive and negative electrode is received according to Eq. S2:

\[
\frac{m^+}{m^-} = \frac{C_{sp}^+}{C_{sp}^-} \times \frac{\Delta V^-}{\Delta V^+}
\]  

(S2)

herein, m (g) is the mass loading, Csp (F·g⁻¹) is the specific capacitance, ΔV (V) is the discharge voltage range for the positive (+) and negative (−) electrodes.

The specific capacitance of asymmetric cell device (Csp\(_{\text{cell}}\), F·g⁻¹) was also calculated by using equation (S1), using m as the total mass of positive and negative electrodes, and the applied potential window. Further, the energy density (E, Wh·kg⁻¹) and power density (P, kW·kg⁻¹) of the resulting asymmetric device was estimated by using equation S4 and S5, respectively.

\[
C_{sp(\text{cell})} = \frac{I \Delta t}{(m^-+m^+) \Delta V}
\]  

(S3)

\[
E = \frac{1}{2} C_{sp(\text{cell})} \times \Delta V^2 \times \frac{1}{3.6}
\]  

(S4)

\[
P = \frac{E}{\Delta t} \times 3.6
\]  

(S5)

Where, the capacitance ‘C_{sp(\text{cell})}’ (F·g⁻¹) is asymmetric cell-specific capacitance obtained from Eq.S3 and m\(^+\) and m\(^−\) is the mass of negative and positive electrodes, respectively, ΔV (V) is the operating voltage range, and Δt (s) is the discharge time estimated from the GCD profiles. The
cyclic stability of the electrodes was evaluated by 5000 GCD cycles of the individual electrode and 3000 GCD cycles of asymmetric supercapacitor at 3 A g\(^{-1}\) in the range of 0 to 1.8 V.

**HER Mechanism:**
The recorded potentials were transformed into reversible hydrogen electrode (RHE) based on the following Eq. S6:

\[
E_{\text{RHE}} (V) = E_{\text{SCE}} (V) + 0.059pH + E_{\text{SCE}}^0 (V)
\]  

(S6)

where the \(E_{\text{RHE}}\) is the transformed potential vs. RHE, \(E_{\text{SCE}}\) is the applied potential vs. Hg/Hg\(_2\)Cl\(_2\) reference electrode, and \(E_{\text{SCE}}^0\) is the standard potential of SCE electrode at 25 °C (i.e., 0.241 V).

![Scheme S1: Schematic illustration of formation of MoS\(_2\)-MoO\(_2\)/graphene nanohybrid](image)

Scheme S1: Schematic illustration of formation of MoS\(_2\)-MoO\(_2\)/graphene nanohybrid
Figure S1. TEM images of pristine MoS$_2$ nanoparticles
Figure S2. XPS deconvoluted spectra of O 1s (a) and XPS survey spectra of pristine GO (b).

Figure S3. Raman spectra of pristine GO.
Figure S4. N\textsubscript{2} adsorption-desorption isotherms (a) and BJH pore size distribution curves (b) for pristine MoS\textsubscript{2} nanoparticles.
Figure S5. CV curve of pristine MoS$_2$ nanoparticles at different scan rates.

Figure S6. Fittings of anodic peak current vs. the square root of scan rate for MoS$_2$-MoO$_2$/G nanohybrid and pristine MoS$_2$. 
Figure S7. Galvanostatic charge/discharge curves of MoS$_2$ at different current densities.

Figure S8. CV curve at different scan rate (a) and GCD curves at different current densities of AC electrode.
Figure S9. Cyclic voltammetry (CV) curves of the 3D MoS$_3$-G nanohybrid and active carbon (AC) as working electrodes in three-electrode system.
Table S1. Comparison of specific capacitance and cycle stability of recently reported MoS$_2$ /MoO$_x$ hybridized and carbon-based electrode materials.

<table>
<thead>
<tr>
<th>Active material</th>
<th>Method</th>
<th>Specific capacitance (F g$^{-1}$)</th>
<th>Capacitance retention (%) / cycles</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoS$_2$/MoO$_2$/CNT</td>
<td>Microwave-Solid state</td>
<td>266.1 (1 A g$^{-1}$)</td>
<td>128 / 2500</td>
<td>3</td>
</tr>
<tr>
<td>MoS$_2$/MoO$_3$</td>
<td>Hydrothermal</td>
<td>287.7 (1 A g$^{-1}$)</td>
<td>90 / 1000</td>
<td>4</td>
</tr>
<tr>
<td>MoO$_2$/MoS$_2$</td>
<td>Hydrothermal</td>
<td>433.3 (5 mV s$^{-1}$)</td>
<td>84.41 / 5000</td>
<td>5</td>
</tr>
<tr>
<td>MoS$_2$/MoO$_x$/Carbon</td>
<td>Microwave-assisted hydrothermal</td>
<td>230 (5 mV s$^{-1}$)</td>
<td>128 / 1500</td>
<td>6</td>
</tr>
<tr>
<td>PANI/MoO$_3$ /ACC</td>
<td>Hydrothermal/In-situ polymerization reactions</td>
<td>1050 (0.5 A g$^{-1}$)</td>
<td>71 / 2000</td>
<td>7</td>
</tr>
<tr>
<td>MoS$_2$/MoO$_3$/PPy</td>
<td>Microwave-assisted hydrothermal method</td>
<td>527 F (5 mV s$^{-1}$)</td>
<td>-</td>
<td>8</td>
</tr>
<tr>
<td>MoS$_2$/RGO</td>
<td>Hydrothermal</td>
<td>607 (5 mV s$^{-1}$)</td>
<td>95 / 1000</td>
<td>9</td>
</tr>
<tr>
<td>Carbon@MoS$_2$/MoO$_2$</td>
<td>Hydrothermal/Calcination</td>
<td>569 (1 A g$^{-1}$)</td>
<td>91.4 (5000)</td>
<td>10</td>
</tr>
<tr>
<td>MoO$_3$/Carbon cloth (CC)</td>
<td>Magnetron sputtering</td>
<td>240 (1.5 A g$^{-1}$)</td>
<td>78.5 / 5000</td>
<td>11</td>
</tr>
<tr>
<td>MoS$_2$/MoO$_3$@graphite</td>
<td>Microwave</td>
<td>268 (1 A g$^{-1}$)</td>
<td>83 / 6000</td>
<td>12</td>
</tr>
<tr>
<td>MoS$_2$- MoO$_3$/Graphene</td>
<td>Solid-State, Thermal</td>
<td>872 (1 A g$^{-1}$)</td>
<td>98 / 3000</td>
<td>Present work</td>
</tr>
</tbody>
</table>

*Present work*
Table S2. Comparison of the catalytic performances involving MoS$_2$ and MoOx nanostructured hybrid materials for HER.

<table>
<thead>
<tr>
<th>Catalysts</th>
<th>Electrolyte</th>
<th>Overpotential (mV) @ 10 mA.cm$^2$</th>
<th>Tafel slope (mV dec$^{-1}$)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>MoS$_2$@Ni/CC</td>
<td>1M KOH</td>
<td>191</td>
<td>89</td>
<td>13</td>
</tr>
<tr>
<td>MoS$_2$/Ni$_3$S$_2$ heterostructures</td>
<td>1 M KOH</td>
<td>249</td>
<td>110</td>
<td>14</td>
</tr>
<tr>
<td>MoS$_2$/G HS</td>
<td>1 M KOH</td>
<td>183</td>
<td>127</td>
<td>15</td>
</tr>
<tr>
<td>NiS/MoS$_2$ CC</td>
<td>1 M KOH</td>
<td>106</td>
<td>56.7</td>
<td>16</td>
</tr>
<tr>
<td>MoO$_{3-x}$</td>
<td>0.1M KOH</td>
<td>143</td>
<td>56</td>
<td>17</td>
</tr>
<tr>
<td>MoS$_2$@NiO</td>
<td>1 M KOH</td>
<td>226</td>
<td>43</td>
<td>18</td>
</tr>
<tr>
<td>Few-layered MoS$_2$ nanosheets</td>
<td>1 M NaOH</td>
<td>350</td>
<td>105</td>
<td>19</td>
</tr>
<tr>
<td>Porous MoO$_3$</td>
<td>1M KOH</td>
<td>113</td>
<td>95</td>
<td>20</td>
</tr>
<tr>
<td>MoS$_2$-MoO$_3$/Graphene</td>
<td>Solid-State, Thermal</td>
<td>93</td>
<td>63</td>
<td>Present work</td>
</tr>
</tbody>
</table>
References


15. X. Yu, G. Zhao, S. Gong, C. Liu, C. Wu, P. Lyu, G. Maurin and N. Zhang, ACS Appl. Mater. Interfaces, DOI:10.1021/acsami.0c04838.


