Intermetallic compounds M_2 Pt (M = AI, Ga, In, Sn) in the oxygen evolution reaction

Ana María Barrios Jiménez, Alim Ormeci, Ulrich Burkhardt, Simone G. Altendorf, Felix Kaiser, Igor Veremchuk, Gudrun Auffermann, Yuri Grin, Iryna Antonyshyn*

Figures and Tables:

Figure S1. Light optical micrographs and EDXS results for the M_2 Pt (M = Al, Ga, In, Sn) samples.

Figure S2. Figure S2. BSE images (material contrast, 27 kV) of the M_2 Pt specimens, where M is Al (a), Ga (b), In (c) or Sn (d), supported by the elemental mapping for Al₂Pt, Ga₂Pt and In₂Pt, revealing the homogeneity of these samples.

Figure S3. Chemical bonding in Sn_2Pt (*top*) and In_2Pt (*bottom*). Position of the (2a)Pt-Sn and (3a)Pt-In bonds are shown with the ELI-D distributions (*left upper corner*) and isosurfaces (*left bottom corner of each panel*). Bonding basins of these bonds (*yellow*) are shown in overlap with the QTAIM atomic shapes of Pt and Sn for Sn_2Pt (*top*), and Pt and two In for In_2Pt (*bottom*).

Figure S4. Every 5th CV cycle (0.1 M HClO₄; 0.05–1.0 V_{RHE}; 50 mV s⁻¹) for the M_2 Pt (M = Al, Ga, In, Sn) compounds. The fifth cycle is presented with *dashed* line and following cycles are presented with the *solid* lines of increasing intensity of corresponding color. Insets: 49th and 50th CV cycles for M_2 Pt.

Figure S5. Normalized XPS spectra of Pt 4f core levels for the M_2 Pt compounds before (*dashed lines*) and after CV (*solid lines*). The vertical solid lines represent the position of Pt 4f core levels in elemental Pt.

Figure S6. Chronopotentiometry, measured at 10 mA cm⁻² during 2 h, for the M_2 Pt compounds.

Figure S7. XPS spectra of *M* core levels in M_2 Pt compounds before (*dashed lines*) and after the standard OER experiment (*solid lines*). The vertical solid lines represent the binding energies for M_2 Pt, M_xO_y oxides and $M(OH)_x$ hydroxides.

Figure S8. Calculated total and orbital projected DOS for the M_2 Pt compounds and *fcc* Pt at the fully-relativistic level.

Figure S9. Surface energies of the different Al₂Pt surfaces versus the chemical potential of Al.

Table S1. OER performance of bulk OER electrocatalysts in acidic media: overpotential at 10 mA cm⁻² (otherwise indicated with the subscript of η) as activity marker, and time of the chronopotentiometry (CP) or chronoamperometry (CA) operation at j = 10 mA cm⁻² (otherwise indicated) as stability marker.

Table S2. The XPS binding energies of Pt $4f_{7/2}$ core levels (BE_{4f}) and their shifts ($\delta(BE_{4f})$, with respect to elemental Pt) in the intermetallic M_2 Pt compounds.

Table S3. Calculated (for homogeneous M_2 Pt) and experimentally obtained (with EDXS, for samples after the standard OER experiment) intensities of the *M* line spectra (in cps/eV) normalized to the Pt $M\alpha$ (using different acceleration voltages).

Figure S1. Light optical micrographs and EDXS results for the M_2 Pt (M = Al, Ga, In, Sn) samples.

Figure S2. BSE images (material contrast, 27 kV) of the M_2 Pt specimens, where M is Al (a), Ga (b), In (c) or Sn (d), supported by the elemental mapping for Al₂Pt, Ga₂Pt and In₂Pt, revealing the homogeneity of these samples.

The specimen of Sn_2Pt contains negligible amount of secondary Sn_4Pt phase. Its small amount can be concluded from light microscopy image on Figure S1 (tiny bright spots) and absence of corresponding reflections on PXRD pattern (Figure 2).

Figure S3. Chemical bonding in Sn_2Pt (*top*) and In_2Pt (*bottom*). Position of the (2a)Pt-Sn and (3a)Pt-In bonds are shown with the ELI-D distributions (*left upper corner*) and isosurfaces (*left bottom corner of each panel*). Bonding basins of these bonds (*yellow*) are shown in overlap with the QTAIM atomic shapes of Pt and Sn for Sn_2Pt (*top*), and Pt and two In for In_2Pt (*bottom*).

Figure S4. Every 5th CV cycle (0.1 M HClO₄; 0.05–1.0 V_{RHE}; 50 mV s⁻¹) for the M_2 Pt (M = Al, Ga, In, Sn) compounds. The fifth cycle is presented with *dashed* line and following cycles are presented with the *solid* lines of increasing intensity of corresponding colour. Insets: 49th and 50th CV cycles for M_2 Pt.

Figure S5. Normalized XPS spectra of Pt 4*f* core levels for the M_2 Pt compounds before (*dashed lines*) and after CV (*solid lines*). The vertical solid lines represent the position of Pt 4*f* core levels in elemental Pt.

Figure S6. Chronopotentiometry, measured at 10 mA cm⁻² during 2 h, for the M_2 Pt compounds.

Figure S7. XPS spectra of *M* core levels in M_2 Pt compounds before (*dashed lines*) and after the standard OER experiment (*solid lines*). The vertical solid lines represent the binding energies for M_2 Pt, M_xO_y oxides and $M(OH)_x$ hydroxides.

The Al spectra after electrochemical experiments are very difficult to interpret because of the overlap of Al 2p core level with the intense Pt 4f one, and complication of Al 2s detection due to the small cross section of this orbital.^{1,2} Additionally, its detection is hampered by its significantly reduced amount due to the pronounced dissolution, as observed from elemental analysis of the effluent electrolyte.

 $Ga(OH)_3$ signal is significantly reduced on the Ga_2Pt surface after the standard OER experiment. There are two possibilities for that: (i) dissolution in acidic media due to its amphoteric nature,^{3,4} and/or (ii) further surface transformation to Ga_2O_3 during the CP measurement.

 $In(OH)_3$ is a basic hydroxide, it reacts with acids to give indium salts. However, indates are hydrolyzed back in water to regenerate the hydroxide⁴ and, therefore, they are present on the In_2Pt surface.

In case of Sn_2Pt , the surface is covered by SnO_2 layer, which impedes access to the Pt, and, therefore, during the CV measurement the Pt oxidation/reduction features are not observed. SnO_2 is well known as catalyst support for the OER in acidic media due to its outstanding stability.⁵ However, it is electrochemically inert and has poor electronic conductivity, and it is commonly doped with other elements to improve its conductivity.⁶⁻⁸ Therefore, the coverage of Sn_2Pt surface by the poorly conductive SnO_2 hinders the electron transfer and leads to OER inactivity of Sn_2Pt .

Figure S8. Calculated total and orbital projected DOS for the M_2 Pt compounds and *fcc* Pt at the fully-relativistic level.

Figure S9. Surface energies of the different Al₂Pt surfaces versus the chemical potential of Al.

Table S1. OER performance of selected bulk OER electrocatalysts in acidic media: overpotential at 10 mA cm⁻² (otherwise indicated with the subscript of η) as activity marker, and time of the chronopotentiometry (CP) or chronoamperometry (CA) operation at j = 10 mA cm⁻² (otherwise indicated) as stability marker.

Electrocatalyst	Electrolyte	Activity	Stability	Ref.			
-	_	$\eta_{10}(\mathrm{mV})$	<i>t</i> (h)				
Noble metal - (based) OER electrocatalysts							
Ru	0.1 M HClO ₄	219 ($\eta_{0.5}$)	-	9			
	$0.1 \text{ M H}_2\text{SO}_4$	255 $(\eta_{0.8})$	$1.2 (j = 0.1 - 1.6 \text{ mA cm}^{-2})$	10			
Ir	0.1 M HClO ₄	$321(\eta_{0.5})$	-	9			
	$0.1 \text{ M H}_2\text{SO}_4$	$390(\eta_{0.8})$	$1.2 (j = 0.1 - 1.6 \text{ mA cm}^{-2})$	10			
*IrO _x / SrIrO ₃	$0.5 \text{ M} \text{H}_2\text{SO}_4$	270-290	30	11			
$Hf_2B_2Ir_5$	$0.1 \text{ M} \text{H}_2\text{SO}_4$	360	$240 (j = 100 \text{ mA cm}^{-2})$	12			
Rh	$0.1 \text{ M} \text{H}_2\text{SO}_4$	590 $(\eta_{0.8})$	-	10			
Pd	$0.1 \text{ M} \text{H}_2\text{SO}_4$	665 $(\eta_{0.8})$	-	10			
Pt	0.1 M HClO ₄	536 $(\eta_{0.5})$	-	9			
	$0.1 \text{ M H}_2\text{SO}_4$	755 $(\eta_{0.8})$	$1.2 (j = 0.1 - 1.6 \text{ mA cm}^{-2})$	10			
Al ₂ Pt	0.1 M HClO ₄	623 ø	2	This work			
	0.1 M HClO ₄	450¢	$456 (j = 90 \text{ mA cm}^{-2})$	13			
Ga ₂ Pt	0.1 M HClO ₄	540	2	This work			
In ₂ Pt	0.1 M HClO ₄	520	2	This work			
Au	$0.1 \text{ M} \text{H}_2\text{SO}_4$	870 ($\eta_{0.8}$)	-	10			
**α-AuOOH	$0.1 \text{ M H}_2\text{SO}_4$	$620(\eta_{0.1})$	-	14			
Transition metal - based OER electrocatalysts							
*γ-MnO ₂	$1 \text{ M H}_2 \text{SO}_4$	480	8000	15			
$*Mn_{0.67}Sb_{0.33}O_{z}$	$1 \text{ M H}_2 \text{SO}_4$	586	2	16			
*MnSb _{1.7} O _y	$1 \text{ M H}_2 \text{SO}_4$	727	168	17			
*Ti-MnO ₂	$0.05 \text{ M} \text{H}_2\text{SO}_4$	$520(\eta_{1.0})$	$265 (E = 1.8 V_{RHE})$	18			
*(Ti,Mn) O_x	$1 \text{ M H}_2 \text{SO}_4$	437 ($\eta_{0.9}$)	$210 (E = 1.67 V_{RHE})$	19			
$*Co_{0.05}Fe_{0.95}O_{y}$	$0.5 \text{ M} \text{H}_2\text{SO}_4$	660	50	20			
*Fe ₂ O ₃	$0.5 \text{ M H}_2\text{SO}_4$	650	24	21			
Fe ₂ Ta	$0.5 \text{ M H}_2\text{SO}_4$	770	-	22			
Co ₂ Ta	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	600	-	22			
Ni ₂ Ta	$0.5 \text{ M H}_2\text{SO}_4$	570	65	22			
$ *Ni_xMn_{1-x}Sb_{1.6-1.8}O_y $	$1 \text{ M H}_2 \text{SO}_4$	670-800	168	17			

*Film

**Electrochemically prepared

^Ø Different pre-treatments

Table S2. The XPS binding energies of Pt $4f_{7/2}$ core levels (BE_{4f}) and their shifts ($\delta(BE_{4f})$, with respect to elemental Pt) in the intermetallic M_2 Pt compounds.

Compound	Initial		After CV		After CV+CP	
	BE _{4f} , eV	$\delta(BE_{4f})$, eV	BE _{4f} , eV	$\delta(BE_{4f})$, eV	BE _{4f} , eV	δ(BE _{4f}), eV
Al ₂ Pt	72.12	1.12	71.4	0.4	71.14	0.14
Ga₂Pt	71.77	0.77	71.22	0.22	71	0
In ₂ Pt	71.42	0.42	71	0	71	0
Sn₂Pt	72.02	1.02	71.64	0.64	71.36	0.36

Table S3. Calculated (for homogeneous M_2 Pt) and experimentally obtained (with EDXS, for samples after the standard OER experiment) intensities of the *M* line spectra (in cps/eV) normalized to the Pt $M\alpha$ (using different acceleration voltages).

Spectral line	5 kV		10 kV		27 kV	
	/ calc.	l exp.	/ calc.	l exp.	I calc.	l exp.
Al <i>Κ</i> α	1.44	0.21	1.07	0.35	0.91	0.65
Ga <i>L</i> α	2.89	0.32	1.70	0.12	1.36	0.04
In <i>L</i> α	0.19	0.02	0.59	0.02	0.91	0.03
Sn <i>L</i> α	0.13	0.18	0.54	0.58	0.91	0.99

References:

- 1. M.B. Trzhaskovskaya, V.I. Nefedov, V.G. Yarzhemsky, At. Data Nucl. Data Tables, 2001, 77, 97-159.
- 2. M.B. Trzhaskovskaya, V.K. Nikulin, V.I. Nefedov, V.G. Yarzhemsky, *At. Data Nucl. Data Tables*, 2006, 92, 245-304.
- 3. S. Aldridge, A.J. Downs, *The Group 13 Metals Aluminium, Gallium, Indium and Thallium: Chemical Patterns and Peculiarities*, John Wiley & Sons, UK, 2011.
- 4. A.J. Downs, *Chemistry of aluminium, gallium, indium and thallium*, Blackie academic and professional, UK, 1993.
- 5. S. Geiger, O. Kasia, A.M. Mingers, K.J.J. Mayrhofer, S. Cherevko, Sci. Rep., 2017, 7, 4595-1-7.
- 6. G. Liu, J. Xu, Y. Wang, X. Wang, J. Mater. Chem. A, 2015, 3, 20791-20800.
- 7. H. Ohno, S. Nohara, K. Kakinuma, M. Uchida, H. Uchida, *Catalysis*, 2019, 9, 74-1-12.
- 8. S. Abbou, R. Chattot, V. Martin, F. Claudel, L. Sola-Hernandez, C. Beauger, L. Dubau, F. Maillard, ACS *Catal.* 2020, **10**, 7283-7294.
- 9. T. Reier, M. Oezaslan, P. Strasser, ACS Catal., 2012, 2, 1765-1772.
- 10. S. Cherevko, A.R. Zeradjanin, A.A. Topalov, N. Kulyk, I. Katsounaros, K.J.J. Mayrhofer, *ChemCatChem*, 2014, **6**, 2219-2223.
- 11. L.C. Seitz, C.F. Dickens, K. Nishio, Y. Hikita, J. Montoya, A. Doyle, C. Kirk, A. Vojvodic, H.Y. Hwang, J.K. Nørskov, T.F. Jaramillo, *Science*, 2016, **353**, 1011-1014.
- 12. A.M. Barrios Jiménez, U. Burkhardt, R. Cardoso-Gil, K. Höfer, S.G. Altendorf, R. Schlögl, Y. Grin, I. Antonyshyn, *ACS Appl. Energy Mater.*, 2020, **3**, 11042-11052.
- 13. I. Antonyshyn, A.M. Barrios Jiménez, O. Sichevych, U. Burkhardt, I. Veremchuk, M. Schmidt, A. Ormeci, I. Spanos, A. Tarasov, D. Teschner, G. Algara-Siller, R. Schlögl, Y. Grin, *Angew. Chem. Int. Ed.*, 2020, **59**, 16770-16776.
- 14. S. Yang, D.G.H. Hetterscheid, ACS Catal., 2020, 10, 12582-12589.
- 15. A. Li, H. Ooka, N. Bonnet, T. Hayashi, Y. Sun, Q. Jiang, C. Li, H. Han, R. Nakamura, *Angew. Chem. Int. Ed.*, 2019, **58**, 5054-5058.
- 16. L. Zhou, A. Shinde, J.H. Montoya, A. Singh, S. Gul, J. Yano, Y. Ye, E.J. Crumlin, M.H. Richter, J.K. Cooper, H.S. Stein, J.A. Haber, K.A. Persson, J.M. Gregoire, *ACS Catal.*, 2018, **8**, 10938-10948.
- 17. I.A. Moreno-Hernandez, C.A. MacFarland, C.G. Read, K.M. Papadantonakis, B.S. Brunschwig, N.S. Lewis, *Energy Environ. Sci.*, 2017, **10**, 2103-2108.
- 18. R. Frydendal, E.A. Paoli, I. Chorkendorff, J. Rossmeisl, I.E.L. Stephens, *Adv. Energy Mater.*, 2015, 5, 1500991-1-9.
- 19. G. Siddiqi, Z. Luo, Y. Xie, Z. Pan, Q. Zhu, J.A. Röhr, J.J. Cha, S. Hu, *ACS Appl. Mater. Interfaces*, 2018, **10**, 18805-18815.
- 20. W.L. Kwong, C.C. Lee, A. Shchukarev, J. Messinger, Chem. Commun., 2019, 55, 5017-5020.
- 21. W.L. Kwong, C.C. Lee, A. Shchukarev, E. Björn, J. Messinger, J. Catal., 2018, 365, 29-35.
- 22. J.S. Mondschein, K. Kumar, C.F. Holder, K. Seth, H. Kim, R.E. Schaak, *Inorg. Chem.*, 2018, **57**, 6010-6015.