
S1

Electronic supplementary information 

First-Principles Investigation of Two-Dimensional Covalent Organic 

Frameworks Electrocatalysts for Oxygen Evolution/Reduction and 

Hydrogen Evolution Reactions†

Jing Ji,a Cunjin Zhang,a Shuaibo Qin,a and Peng Jin*ab

aSchool of Materials Science and Engineering, Hebei University of Technology, Tianjin 

300130, China. E-mail: china.peng.jin@gmail.com

bKey Laboratory of Special Functional Materials for Ecological Environment and 

Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, 

China.

Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels.
This journal is © The Royal Society of Chemistry 2021



S2

Fig. S1 Calculated total energies of Co-COF as a function of the thickness of vacuum 
layer (11-20 Å). According to the small energy change (< 0.013 eV), a 15 Å vacuum 
layer is large enough for current study.

Fig. S2 Unit cell (highlighted by the dashed line) used in the calculations of M-COFs (8 
N atoms, 60 C atoms, 36 H atoms, and 1 metal atom). C: brown; N: blue; H: white; M: 
golden.
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Fig. S3 Gibbs free energy diagrams for the OER on Co-COF with and without dipole 
corrections. According to the small effect, the corrections were not considered in the 
current work.
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Fig. S4 Electron localization functions (ELFs) for the metalloporphyrin planes of all the 
M-COFs.
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Table S1 Standard dissolution potentials (U0
diss)S1 of metal atoms, number of transferred 

electrons (n) during the dissolution, formation energies (Ef-M, eV) and calculated 
dissolution potentials (Udiss, V vs. SHE) of the metals in M-COFs.

Metal U0
diss n Ef-M Udiss Metal U0

diss n Ef-M Udiss

Sc -2.08 3 -8.32 0.69 Cu 0.34 2 -3.90 2.29

Ti -1.63 2 -6.03 1.38 Zn -0.76 2 -5.41 1.95

V -1.18 2 -5.88 1.76 Ru 0.46 2 -3.30 2.11

Cr -0.91 2 -6.01 2.10 Rh 0.60 2 -5.46 3.33

Mn -1.19 2 -5.46 1.54 Pd 0.95 2 -4.92 3.41

Fe -0.45 2 -4.81 1.95 Ag 0.80 1 -4.27 5.07

Co -0.28 2 -4.77 2.11 Ir 1.16 2 -4.85 3.58

Ni -0.26 2 -4.96 2.22
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Fig. S5 Total and projected DOSs of M-COFs with band gap energies (black) and d-band 
centers of the metals (rose). Orange line denotes the Fermi level. Both spin up (top) and 
spin down (bottom) states are shown.
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Fig. S6 Electronic band structures of M-COFs.
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Fig. S7 Unit cell of the metal-free H2-COFs.
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Fig. S8 Optimized structures of all key intermediate species involved in the OER/ORR 
process on the M-COFs. The distances are given in Å.
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Table S2  Adsorption free energies of various reaction species on the M-COFs (unit: eV) 
and OER and ORR overpotentials (V).

metal ΔG*OH ΔG*O ΔG*OOH ηOER ηORR

Sc -1.85 -1.94 1.03 2.66 3.08

Ti -0.75 -0.62 1.02 2.67 1.98

V -0.49 -0.06 1.65 2.04 1.72

Cr 0.03 2.02 3.03 0.76 1.20

Mn 1.09 2.34 4.19 0.62 0.50

Fe 1.08 2.28 4.08 0.57 0.39

Co 1.13 2.74 3.92 0.38 0.23

Ni 1.59 2.80 4.73 0.70 1.04

Cu 2.02 3.01 5.60 1.36 1.91

Zn 2.11 3.11 5.39 1.05 1.70

Ru -0.35 0.49 2.86 1.14 1.58

Rh 0.42 2.16 3.52 0.51 0.81

Pd 2.08 2.81 5.30 1.26 1.61

Ag 1.81 2.71 5.01 1.07 1.32

Ir 0.61 2.18 3.56 0.34 0.62
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Fig. S9 Gibbs free energy diagrams for the (a) OER on RuO2 (110) and (b) IrO2 (110) as 
well as (c) ORR on Pt (111).

Computational Details:

Periodic slab models of the RuO2(110) and IrO2(110) surfaces were constructed by using 
2 × 4 surface supercells with three metal oxide layers separated by at least 10 Å of 
vacuum layer. Periodic slab model of the Pt(111) was constructed using 4 × 4 surface 
supercells with five metal layers separated by at least 10 Å of vacuum layer. The lattice 
parameters of RuO2(110), IrO2(110) and Pt(111) are (a = 12.56 Å, b = 12.85 Å, c = 23.14 
Å), (a = 12.75 Å, b = 12.86 Å, c = 22.46 Å) and (a = 12.56 Å, b = 11.16 Å, c = 24.06 Å), 
respectively. The k-points of 2×2×1 was generated by using the Monkhorst-Pack method. 
The other calculation settings are the same as those for the M-COFs as described in the 
main text.
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Fig. S10 Optimized structures of *H intermediates for the HER on the M-COFs. The 
distances are given in Å.

Fig. S11 PDOSs of axial Mn-3d states and O-2p states for the OER/ORR intermediates 
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on Mn-COF (the predominated d state is marked if applicable). Both spin up (top) and 
spin down (bottom) states are shown.

Fig. S12 PDOSs of axial Fe-3d states and O-2p states for the OER/ORR intermediates on 
Fe-COF (the predominated d state is marked if applicable). Both spin up (top) and spin 
down (bottom) states are shown.

Fig. S13 PDOSs of axial Co-3d states and O-2p states for the OER/ORR intermediates on 
Co-COF (the predominated d state is marked if applicable). Both spin up (top) and spin 
down (bottom) states are shown.
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Fig. S14 PDOSs of axial Rh-4d states and O-2p states for the OER/ORR intermediates on 
Rh-COF (the predominated d state is marked if applicable). Both spin up (top) and spin 
down (bottom) states are shown.

Fig. S15 PDOSs of axial Ir-5d states and O-2p states for the OER/ORR intermediates on 
Ir-COF (the predominated d state is marked if applicable). Both spin up (top) and spin 
down (bottom) states are shown.
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