Electronic supplementary information

First-Principles Investigation of Two-Dimensional Covalent Organic

Frameworks Electrocatalysts for Oxygen Evolution/Reduction and

Hydrogen Evolution Reactions[†]

Jing Ji,^a Cunjin Zhang,^a Shuaibo Qin,^a and Peng Jin*^{ab}

^aSchool of Materials Science and Engineering, Hebei University of Technology, Tianjin

300130, China. E-mail: china.peng.jin@gmail.com

^bKey Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin 300130, China.

Fig. S1 Calculated total energies of Co-COF as a function of the thickness of vacuum layer (11-20 Å). According to the small energy change (< 0.013 eV), a 15 Å vacuum layer is large enough for current study.

Fig. S2 Unit cell (highlighted by the dashed line) used in the calculations of M-COFs (8 N atoms, 60 C atoms, 36 H atoms, and 1 metal atom). C: brown; N: blue; H: white; M: golden.

Fig. S3 Gibbs free energy diagrams for the OER on Co-COF with and without dipole corrections. According to the small effect, the corrections were not considered in the current work.

Fig. S4 Electron localization functions (ELFs) for the metalloporphyrin planes of all the M-COFs.

Metal	$U^0_{ m diss}$	n	$E_{\mathrm{f-M}}$	$U_{ m diss}$	Metal	$U^0_{\rm diss}$	n	$E_{\mathrm{f-M}}$	$U_{\rm diss}$
Sc	-2.08	3	-8.32	0.69	Cu	0.34	2	-3.90	2.29
Ti	-1.63	2	-6.03	1.38	Zn	-0.76	2	-5.41	1.95
V	-1.18	2	-5.88	1.76	Ru	0.46	2	-3.30	2.11
Cr	-0.91	2	-6.01	2.10	Rh	0.60	2	-5.46	3.33
Mn	-1.19	2	-5.46	1.54	Pd	0.95	2	-4.92	3.41
Fe	-0.45	2	-4.81	1.95	Ag	0.80	1	-4.27	5.07
Co	-0.28	2	-4.77	2.11	Ir	1.16	2	-4.85	3.58
Ni	-0.26	2	-4.96	2.22					

Table S1 Standard dissolution potentials $(U^0_{\text{diss}})^{\text{S1}}$ of metal atoms, number of transferred electrons (*n*) during the dissolution, formation energies ($E_{\text{f-M}}$, eV) and calculated dissolution potentials (U_{diss} , V vs. SHE) of the metals in M-COFs.

Fig. S5 Total and projected DOSs of M-COFs with band gap energies (black) and *d*-band centers of the metals (rose). Orange line denotes the Fermi level. Both spin up (top) and spin down (bottom) states are shown.

Fig. S6 Electronic band structures of M-COFs.

Fig. S7 Unit cell of the metal-free H_2 -COFs.

	*OH	*0	*OOH		
Sc	1.89		2.21 1.99		
Ti			2.16 1.90		
v					
Cr	1.84				
Mn	1.92				
Fe	1.75	B	1.92		
Со					
Ni	2.00		2.14		
Cu	1.98		2.65		
Zn	1.93		2.09		
Ru	1.90	1.74			
Rh	1.96		1.97		
Pd	2.23	2.16	2.68		
Ag	2.35	2.24	2.96		
Ir	1.95		1.97		

Fig. S8 Optimized structures of all key intermediate species involved in the OER/ORR process on the M-COFs. The distances are given in Å.

metal	$\Delta G_{* m OH}$	ΔG_{*0}	ΔG_{*OOH}	$\eta^{ ext{OER}}$	$\eta^{ m ORR}$
Sc	-1.85	-1.94	1.03	2.66	3.08
Ti	-0.75	-0.62	1.02	2.67	1.98
V	-0.49	-0.06	1.65	2.04	1.72
Cr	0.03	2.02	3.03	0.76	1.20
Mn	1.09	2.34	4.19	0.62	0.50
Fe	1.08	2.28	4.08	0.57	0.39
Co	1.13	2.74	3.92	0.38	0.23
Ni	1.59	2.80	4.73	0.70	1.04
Cu	2.02	3.01	5.60	1.36	1.91
Zn	2.11	3.11	5.39	1.05	1.70
Ru	-0.35	0.49	2.86	1.14	1.58
Rh	0.42	2.16	3.52	0.51	0.81
Pd	2.08	2.81	5.30	1.26	1.61
Ag	1.81	2.71	5.01	1.07	1.32
Ir	0.61	2.18	3.56	0.34	0.62

Table S2Adsorption free energies of various reaction species on the M-COFs (unit: eV)and OER and ORR overpotentials (V).

Fig. S9 Gibbs free energy diagrams for the (a) OER on RuO_2 (110) and (b) IrO_2 (110) as well as (c) ORR on Pt (111).

Computational Details:

Periodic slab models of the RuO₂(110) and IrO₂(110) surfaces were constructed by using 2×4 surface supercells with three metal oxide layers separated by at least 10 Å of vacuum layer. Periodic slab model of the Pt(111) was constructed using 4×4 surface supercells with five metal layers separated by at least 10 Å of vacuum layer. The lattice parameters of RuO₂(110), IrO₂(110) and Pt(111) are (a = 12.56 Å, b = 12.85 Å, c = 23.14 Å), (a = 12.75 Å, b = 12.86 Å, c = 22.46 Å) and (a = 12.56 Å, b = 11.16 Å, c = 24.06 Å), respectively. The k-points of $2 \times 2 \times 1$ was generated by using the Monkhorst-Pack method. The other calculation settings are the same as those for the M-COFs as described in the main text.

Fig. S10 Optimized structures of *H intermediates for the HER on the M-COFs. The distances are given in Å.

Fig. S11 PDOSs of axial Mn-3d states and O-2p states for the OER/ORR intermediates

on Mn-COF (the predominated d state is marked if applicable). Both spin up (top) and spin down (bottom) states are shown.

Fig. S12 PDOSs of axial Fe-3d states and O-2p states for the OER/ORR intermediates on Fe-COF (the predominated d state is marked if applicable). Both spin up (top) and spin down (bottom) states are shown.

Fig. S13 PDOSs of axial Co-3d states and O-2p states for the OER/ORR intermediates on Co-COF (the predominated d state is marked if applicable). Both spin up (top) and spin down (bottom) states are shown.

Fig. S14 PDOSs of axial Rh-4*d* states and O-2*p* states for the OER/ORR intermediates on Rh-COF (the predominated *d* state is marked if applicable). Both spin up (top) and spin down (bottom) states are shown.

Fig. S15 PDOSs of axial Ir-5*d* states and O-2*p* states for the OER/ORR intermediates on Ir-COF (the predominated *d* state is marked if applicable). Both spin up (top) and spin down (bottom) states are shown.

References

S1 X. Guo, J. Gu, S. Lin, S. Zhang, Z. Chen, S. Huang, J. Am. Chem. Soc., 2020, 142, 5709-5721.