Supporting Information

Fundamental Understanding on Electrochemical Catalytic Performance of Carbonized Natural Wood: Wood Species and Carbonization Temperature

Yao Huang^{a,‡}, Meiling Song^{a,‡}, Cuihua Tian^{a,*}, Yiqiang Wu^a, Yuyan Li^a, Ning Yan^a and Yan Qing^{a,*}

^a College of Materials Science and Engineering, Central South University of Forestry and Technology,

Changsha 410004, P.R. China

*Corresponding Author

Email addresses: tian1990c@126.com (Cuihua Tian), qingyan0429@163.com (Yan Qing)

[‡] These authors contributed equally to this work.

Table of Contents

Fig. S1 Electrocatalytic hydrogen evolution reaction. (a-d) LSV curves of the pine, fir, poplar, and balsa carbons in 1 M KOH solution.

Fig. S2 Electrocatalytic oxygen evolution reaction. (a-d) LSV curves of the pine, fir, poplar, and balsa carbons in 1 M KOH solution.

Fig. S3 (a-d) The digital photos for pine, fir, poplar, and balsa woods, respectively.

Fig. S4 (a-d) SEM images of cross-sections of natural pine, fir, poplar, and balsa woods. (a1-a5) SEM images of cross-sections of pine carbon obtained at carbonization temperatures of 600 °C , 700 °C, 800 °C, 900 °C, and 1000 °C. (b1-b5) SEM images of cross-sections of fir carbon obtained at carbonization temperatures of 600 °C , 700 °C, 800 °C, 900 °C, and 1000 °C. (c1-c5) SEM images of cross-sections of poplar carbon obtained at carbonization temperatures of 600 °C , 700 °C, 800 °C, 800 °C, 900 °C, and 1000 °C. (c1-c5) SEM images of cross-sections of poplar carbon obtained at carbonization temperatures of 600 °C , 700 °C, 800 °C, 800 °C, 900 °C, and 1000 °C. (d1-d5) SEM images of cross-sections of balsa carbon obtained at carbonization temperatures of 600 °C , 700 °C, 800 °C.

Fig. S5 (a-d) SEM images of chord-sections of natural pine, fir, poplar, and balsa woods. (a1-a5) SEM images of chord-sections of pine carbon obtained at carbonization temperatures of 600 °C , 700 °C, 800 °C, 900 °C, and 1000 °C. (b1-b5) SEM images of chord-sections of fir carbon obtained at carbonization temperatures of 600 °C , 700 °C, 800 °C, 900 °C, and 1000 °C. (c1-c5) SEM images of chord-sections of poplar carbon obtained at carbonization temperatures of 600 °C , 700 °C, 800 °C, 800 °C, 900 °C, and 1000 °C. (c1-c5) SEM images of chord-sections of poplar carbon obtained at carbonization temperatures of 600 °C , 700 °C, 800 °C, 800 °C, 900 °C, and 1000 °C. (d1-d5) SEM images of chord-sections of balsa carbon obtained at carbonization temperatures of 600 °C , 700 °C, 800 °C.

Fig. S6 CV curves of wood carbon in 1.0 M KOH solution at different scan rates.

Fig. S7 Adsorption-desorption isotherm of wood carbons.

Fig. S8 (a) LSV curves of chord-section of wood carbon. (b) Comparison of electrocatalytic activity of cross-section and chord-section of wood carbons.

Fig. S9 Raman spectra of the wood carbons obtained by calcination at 900°C.

Fig. S10 XRD pattern of the wood carbons obtained by calcination at 900°C.

Fig. S11 (a1-a4) Digital photographs of bulk pine, fir, poplar, and balsa carbons, respectively. (b1-b4) Digital photographs of powdered pine, fir, poplar, and balsa carbons, respectively. (c-d) SEM images of powdered pine, fir, poplar, and balsa carbons, respectively.

Table S1 Pore size distribution and specific surface area of wood carbons.

Table S2 Mechanical strength of wood carbons.

Fig. S1 Electrocatalytic hydrogen evolution reaction. (a-d) LSV curves of the pine, fir, poplar, and balsa carbons in 1 M KOH solution.

Fig. S2 Electrocatalytic oxygen evolution reaction. (a-d) LSV curves of the pine, fir, poplar, and balsa carbons in 1 M KOH solution.

Fig. S3 (a-d) The digital photos for pine, fir, poplar, and balsa woods, respectively.

Fig. S4 (a-d) SEM images of cross-sections of natural pine, fir, poplar, and balsa woods. (a1-a5) SEM images of cross-sections of pine carbon obtained at carbonization temperatures of 600 °C , 700 °C, 800 °C, 900 °C, and 1000 °C. (b1-b5) SEM images of cross-sections of fir carbon obtained at carbonization temperatures of 600 °C , 700 °C, 800 °C, 900 °C, and 1000 °C. (c1-c5) SEM images of cross-sections of poplar carbon obtained at carbonization temperatures of 600 °C , 900 °C, and 1000 °C. (d1-d5) SEM images of cross-sections of balsa carbon obtained at carbonization temperatures of 600 °C , 900 °C, and 1000 °C. (d1-d5) SEM images of cross-sections of balsa carbon obtained at carbonization temperatures of 600 °C , 700 °C, 800 °C, 900 °C, and 1000 °C.

Fig. S5 (a-d) SEM images of chord-sections of natural pine, fir, poplar, and balsa woods. (a1-a5) SEM images of chord-sections of pine carbon obtained at carbonization temperatures of 600 °C , 700 °C, 800 °C, 900 °C, and 1000 °C. (b1-b5) SEM images of chord-sections of fir carbon obtained at carbonization temperatures of 600 °C , 700 °C, 800 °C, 900 °C, and 1000 °C. (c1-c5) SEM images of chord-sections of poplar carbon obtained at carbonization temperatures of 600 °C , 700 °C, 900 °C, and 1000 °C. (d1-d5) SEM images of chord-sections of balsa carbon obtained at carbonization temperatures of 600 °C , 700 °C, 800 °C, 900 °C, and 1000 °C.

Fig. S6 CV curves of wood carbon in 1.0 M KOH solution at different scan rates.

Fig. S7 Adsorption-desorption isotherm of wood carbons.

Fig. S8 (a) LSV curves of chord-section of wood carbon. (b) Comparison of electrocatalytic activity of cross-section and chord-section of wood carbons.

Fig. S9 (a-d) Raman spectra of the wood carbons obtained by calcination at 900°C.

Fig. S10 XRD pattern of the wood carbons obtained by calcination at 900°C.

Fig. S11 (a1-a4) Digital photographs of bulk pine, fir, poplar, and balsa carbons, respectively. (b1-b4) Digital photographs of powdered pine, fir, poplar, and balsa carbons, respectively. (c-d) SEM images of powdered pine, fir, poplar, and balsa carbons, respectively.

Wood carbon	the pore size of macropores (μm)	Porosity	the pore size of micropores (nm)	Specific surface area (m ² g ⁻¹)
Pine	3.03, 25.45	43%	0.73, 1.12	396.26
Fir	0.52, 2.52, 13.91	44%	0.93, 1.27	376.12
Poplar	0.10, 71.95	68%	0.80, 1.27	386.38
Balsa	3.89, 13.91, 28.85, 143.22	22%	0.68, 1.27	482.52

Table S1 Pore size distribution and specific surface area of wood carbons.

Wood carbon	Pine	Fir	Poplar	Balsa
Compressive strength (MPa)	13	19	22	18
Maximum compression force (KN)	2.61	3.82	4.41	3.61

Table S2 Mechanical strength of wood carbons.