A novel Ba_{0.95}La_{0.05}Fe_{0.9}Nb_{0.1}O_{3-δ} ceramic electrode for symmetrical solid oxide fuel cells

Zhongbiao Li^{a,‡}, Jinpeng Wang^{a,‡}, Jiangpeng Zhu^a, Yanjun Sun^c, Zhihao Wang^a, Yujun Zhao^a, Zhaoling Wei^{a,b,*},

Zhiwen Zhu^{a,*}, Qiuju Zheng^{a,*}

^a Key Laboratory of Processing and Testing Technology of Glass & Functional Ceramics of Shandong Province,

School of Materials Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences),

Jinan, Shandong 250353, People's Republic of China

^b College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan,

Shandong 250014, PR China

^c Jingang new materials Co., Ltd., Binzhou, Shandong 256216, People's Republic of China

Fig. S1 XRD patterns of BLFN-LSGM composite powders treated in air and wet H₂ for 10 h.

^{*} Corresponding author: E-mail address:

zlwei@126.com (Z. Wei); zhuzhw@qlu.edu.cn (Z. Zhu); qlzhengqj@163.com (Q. Zheng).

[‡] These authors contribute equally to this work.

Fig. S2 Thermal expansion behaviors of the BLFN material in air and N₂.

Fig. S3 Nyquist plots of the BLFN electrode measured at 750 °C under different PO_2 and PH_2 , respectively. The inset is the equivalent circuit for fitting EIS.

Fig. S4 Comparison of high- and low-frequency resistances obtained from DRT analysis and equivalent circuit fitting, respectively.

Fig. S5 Nyquist plots of BLFN|LSGM|BLFN symmetrical cell under various hydrogen partial pressure (*P*H₂)

Fig. S6 The short-term stability of the single S-SOFC with the BLFN symmetrical electrode under a constant working voltage of 0.7 V.