High-performance Ni-Ce_{1-x} Zr_xO_2 nanoparticle for biogas reforming: enhance CO_2 activation and stability

Zhige Zhang¹*, Guofeng Zhao²*, Han Bing¹, Jiawei Zhong¹*, Jun Xie¹*

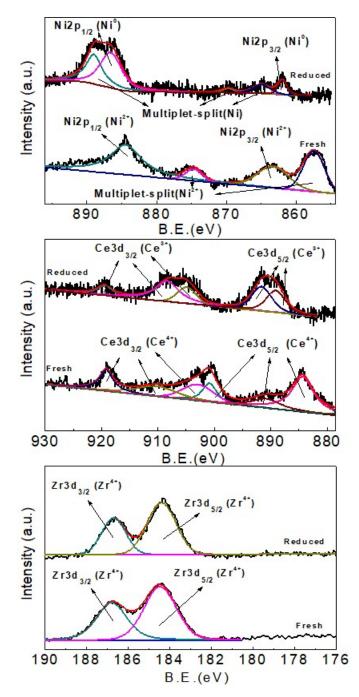
¹ Institute of Biomass Engineering, South China Agricultural University; Key

Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and

Rural Affairs; Guangdong Engineering Technology Research Center of Agricultural

and Forestry Biomass, South China Agricultural University, Guangzhou 510642, P.R.

China.


² Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P.R. China.

*Z. Zhang, and G. Zhao contributed equally to this paper.

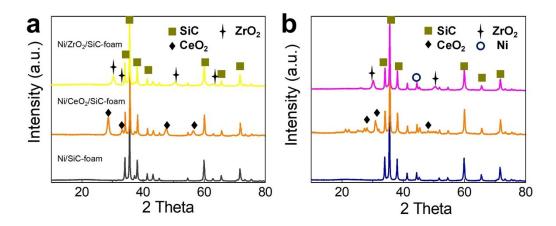

#Corresponding authors: Jiawei Zhong (zhongjiaweiv@scau.edu.cn), Jun Xie (xiejun@scau.edu.cn).

Table S1. Metal amount of Ni-Ce_{1-x}Zr_xO₂/SiC-foam catalysts.

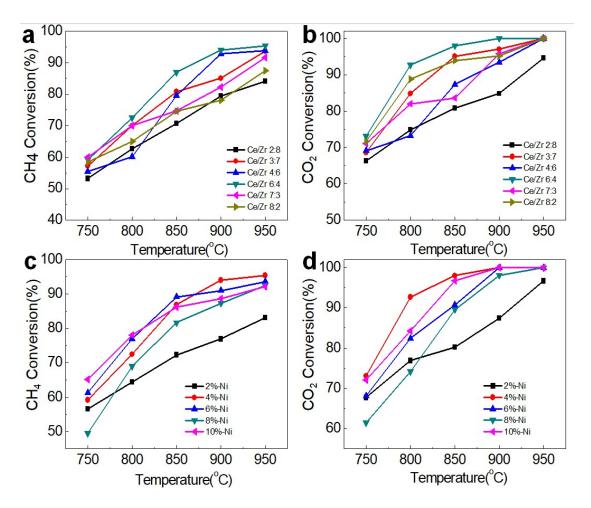

	Loading (wt%)					
Catalyst	Nominal			Actual		
	Ni	Ce	Zr	Ni	Се	Zr
4wt%Ni/10wt%Ce _{0.6} Zr _{0.}	3.1	5.5	2.3	3.0	3.9	0.8
₄ O ₂ /SiC-foam						

Fig. S1. XPS spectra of (a) Ni and (b) Ce (c) Zr elements for fresh and reduced Ni/Ce_{1-x}Zr_{0x}O₂/SiC-F.

Fig. S2. XRD patterns of (a) fresh and (b) reduced Ni/CeO₂/SiC-foam, Ni/ZrO₂/SiC-foam and Ni/SiC-foam.

Fig. S3. (a-b) CH₄ and CO₂ conversions rates on Ni/Ce_{1-x}Zr_{0x}O₂/SiC-foam with different Ce/Zr molar ratio. (c-d) CH₄ and CO₂ conversions on Ni/Ce_{0.6}Zr_{0.4}O₂/SiC-foam with different Ni loadings. Reaction condition: CH₄/CO₂ molar ratio of 1/1,

GHSV of 24000 mL $g^{-1}\ h^{\text{--}1},$ atmospheric pressure.

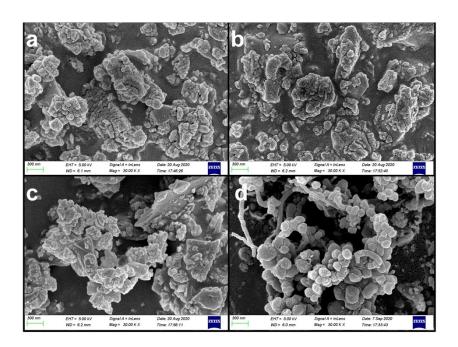


Fig. S4. SEM images of (a) Ni/Ce $_{0.6}$ Zr $_{0.4}$ O $_2$ /SiC-foam, (b) Ni/CeO $_2$ /SiC-foam, (c) Ni/ZrO $_2$ /SiC-foam and (d) Ni/SiC-foam after catalytic activity evaluation.

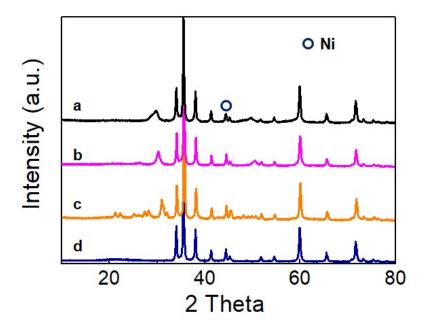


Fig. S5. XRD patterns of (a) Ni/Ce $_{0.6}$ Zr $_{0.4}$ O $_2$ /SiC-foam, (b) Ni/ZrO $_2$ /SiC-foam, (c) Ni/CeO $_2$ /SiC-foam and (d) Ni/SiC-foam after catalytic activity evaluation.

 $\label{eq:continuous_size} \textbf{Table S2.} \ \ \text{Average particle size of Ni NPs of Ni/Ce}_{0.6} Zr_{0.4} O_2/SiC\text{-foam, Ni/ZrO}_2/SiC\text{-foam, Ni/Ce}O_2/SiC\text{-foam and Ni/SiC-foam after catalytic activity evaluation.}$

Ni size ^b (nm)
11
23
24
32